

PROJECT MANUAL

HVAC UPGRADES & INTERIOR FINISHES - WEST MIDDLE SCHOOL 1900 N. Rockton Ave, Rockford, IL 61103

ROCKFORD PUBLIC SCHOOLS 205

ROCKFORD, ILLINOIS

PROJECT MANUAL

FOR

HVAC UPGRADES AND INTERIOR FINISHES - WEST MIDDLE SCHOOL 1900 N. ROCKTON AVE, ROCKFORD, IL 61103 **ROCKFORD PUBLIC SCHOOLS 205** ROCKFORD, ILLINOIS

RPS PROJECT NO: 2021; IFB 21-14

LDG PROJECT NO. 30238

DATE: January 19, 2021

LARSON & DARBY GROUP 4949 HARRISON AVENUE, SUITE 100

Illinois Design Firm Registration Number: 184-000280

ARCHITECTURE-ENGINEERING-INTERIORS **ROCKFORD, ILLINOIS 61108**

STEPHEN M. NELSON Licensed Architect LIC. EXPIRES: 11/30/2022

RAED SALEM

Date

Registered Professional Engineer LIC. EXPIRES: 11/30/2021

Date

TABLE OF CONTENTS

PROCUREMENT AND CONTRACTING DOCUMENTS

DIVISION 00 - PROCUREMENT AND CONTRACTING REQUIREMENTS BY RPS		
00 41 00	Bid Offer Form	
00 73 00	Supplementary Conditions	

SPECIFICATIONS

DIVISION 0	1 - GENERAL REQUIREMENTS
01 10 00	Summary
01 20 00	Price and Payment Procedures
01 30 00	Administrative Requirements
01 50 00	Temporary Facilities and Controls
01 60 00	Product Requirements
01 70 00	Execution and Closeout Requirements
01 78 23	Operation and Maintenance Data
01 78 39	Project Record Documents
DIVISION 05	- METALS
05 50 00	Metal Fabrications
DIVISION 07	- THERMAL AND MOISTURE PROTECTION
07 84 13	Penetration Firestopping
07 92 00	Joint Sealants
DIV/ICIONI 00	ODENINGS
	- OPENINGS
08 80 00	Glazing
DIVISION 09	- FINISHES
09 01 90.52	
09 65 16	Resilient Sheet Flooring
09 65 19	Resilient Tile Flooring
09 68 13	Tile Carpeting
09 68 16	Sheet Carpeting
DIVICION 33	LIEATING VENTINATING AND AID CONDITIONING
23 05 13	 HEATING, VENTINATING, AND AIR CONDITIONING Common Motor Requirements For HVAC Equipment
23 05 13	Hangers And Supports For HVAC Piping And Equipment
23 05 29	Identification For HVAC Piping And Equipment
23 05 93	Testing, Adjusting, And Balancing For HVAC
23 07 13	Duct Insulation
23 07 19	HVAC Piping Insulation
23 09 00	Instrumentation And Control For HVAC
23 09 93	Sequence Of Operations For HVAC Controls
23 22 13	Steam And Condensate Heating Piping
23 22 16	Steam And Condensate Piping Specialties
23 31 13	Metal Ducts
23 33 00	Air Duct Accessories
23 82 19	Fan Coil Units
23 82 23	Unit Ventilators

DIVISION 26 - ELECTRICAL 26 05 00 **Basic Electrical Requirements** Low-voltage Electrical Power Conductors And Cables 26 05 19 Hangers And Supports For Electrical Systems 26 05 29 Raceway And Boxes For Electrical Systems 26 05 33 Identification For Electrical Systems 26 05 53

END TABLE OF CONTENTS

BID OFFER FORM

Bid # 21-14 HVAC UPGRADES & INTERIOR FINISHES FOR WEST MIDDLE SCHOOL, for ROCKFORD

PUBLIC SCHOOLS DISTRICT 205.
BID SUBMITTED BY:
Date: January 15, 2021
The undersigned, having become familiar with the local conditions affecting cost of work and with the Bidding
Documents, including the advertisement of the Invitation for Bid, the Instructions and Supplementary
Instructions to Bidders, this Bid Offer Form, the General and Supplementary Conditions, the Drawings and
Specifications, and Addenda issued thereto, as prepared and issued by the Board of Education of Rockford School
District No. 205, Winnebago and Boone Counties, Illinois hereby agrees to furnish all labor, material and
equipment necessary to do the Work required for the project and IFB identified above, for the amount shown
below:
Note: Contractor to write "No Bid" in the dollar amount section for any line items not bid.
BASE BID:
A. BASE BID:
DOLLARS (\$)
ALTERNATE BIDS: State the amount to be added to or deducted from the Base Bid when Work shown or specified Under the Alternate Bids is accepted and incorporated in the Contract.
BASE BID : Unit ventilator replacement and select radiator and exposed radiator piping removal, and related electrical and architectural Work in Areas A and B.
ALTERNATE BID NO. 1 : Where indicated on Mechanical Drawings, remove existing steam radiators and associated exposed piping, and patch penetrations in existing floors, walls, and ceilings. Patching of penetrations in fire-rated assemblies shall be with UL-rated penetration firestopping assemblies. Add the sum of:
DOLLARS (\$).
ALTERNATE BID NO. 2: Add scheduled painting of rooms. Add the sum of:
ALTERNATE BID NO. 3: Add painting of items indicated on Drawings, generally including. a) repainting of
lockers, hollow metal door frames, and hollow metal doors, fire extinguisher cabinets, metal covers/plates, metal grilles, expansion joint covers, and other metal components in the corridors, b) stairwells including stair railings,

L&D #30238 BID OFFER FORM PAGE 1

stringers, underside of stairs, risers, and other metal stair components.. Add the sum of:

BID OFFER FORM

	DOLLARS (\$)
ALTERNATE BID NO. 4: Add HVAC Work and sum of:	related electrical and architectural Work in Area C. Add the
	DOLLARS (\$)
ALTERNATE BID NO. 5: Add HVAC Work and sum of:	related electrical and architectural Work in Area D. Add the
	DOLLARS (\$)
ADDENDA RECEIVED	
The undersigned acknowledges receipt of Addenda	a to inclusive.
PRE-BID MEETING ATTENDANCE	
A Bidder representative attended the Pre-Bid Meet SITE VISIT	ting? YESOR No
Existing premises and conditions were checked by	an on-site inspection on
CONTRACTOR'S QUALIFICATION STATEM	IENT
SUBMITTED WITH THE BID. Include at least the with phone number, date of completion, description	ractor's Qualification Statement is required AND MUST BE ree references from projects completed in the past five (5) years on of work, and project architect (or engineer) contact name ne scope of this bid, and the bidder must have acted in the
Contractor has adequate equipment to perform the	e work properly and expeditiously:YesNo.
COMMENCEMENT AND COMPLETION OF	CONTRACT
Order to Proceed or if required, upon execution of specified completion time. The undersigned	to commence the contract work within five (5) days of receipt of a formal written contract and to complete said Work within the further agrees to execute the Contract, furnish satisfactory nice coverage, as specified in strict accordance with the Contract
Date of Commencement of Construction:	June 14, 2021
Date of Substantial Completion:	August 6, 2021
Date of Final Completion:	August 13, 2021
BIDDER:	
	rtnership) (Individual) Circle One
Address	

L&D #30238 BID OFFER FORM PAGE 2

BOARD OF EDUCATION ROCKFORD SCHOOL DISTRICT NO. 205

BID OFFER FORM

	Street		
	City	State	Zip Code
	Phone No.		Email address
BIDDI	ER FEIN/SSN NO		
By:	Bidder or Authorized A		
	Bidder or Authorized A	gent Signature	Print name
Title:			<u> </u>
Subsci	ribed and sworn to before	this day of	,
Notary	Public		
	My commission expires:		
BID D	EPOSIT CERTIFICATION	ON	
Bid Bo	nd, Bank Draft or Certifie	d Check made payabl	total Bid including Alternate Bids. This Bid Deposit is to be a le to the "Rockford School District No. 205", as a guarantee er into a contract to perform with the Board of Education.
Amou	nt of Total Bid	\$	
Amoun	nt of Bank draft or Certifie	d Check \$	
BIDDI	ER:		
Signat	ure of Bidder or Authorize	ed Agent	
SUBC	ONTRACTOR LISTING	<u> </u>	
1.	Pursuant to bidding req	uirements for the Wo	ork:
	to use the following Sub	contractors. The Bio District reserves the	ng or exceeding $\frac{1}{2}$ of 1% of the total Contract Sum, proposes lder proposes to perform all other portions of the Work with right to qualify all Subcontractors. COPY AND ATTACH
2.	<u>Portion of the Work</u>	Sub	contractor Name and Address

L&D #30238 BID OFFER FORM PAGE 3

BOARD OF EDUCATION ROCKFORD SCHOOL DISTRICT NO. 205

BID OFFER FORM
Bidder:
By:
By:Bidder or Authorized Agent Signature

-END OF BID OFFER FORM-

L&D #30238 BID OFFER FORM PAGE 4

DOCUMENT 007300 - SUPPLEMENTARY CONDITIONS

- 1. CHANGE ORDER MARK-UPS: Add the following to provisions regarding Change Order markups in the Conditions of the Contract:
 - A. The combined overhead and profit included in the total cost to the Owner for a change in the Work shall be based on the following schedule:
 - .1 For the Contractor, for Work performed by the Contractor's own forces, twelve percent (12%) of the cost.
 - .2 For the Contractor, for Work performed by the Contractor's Subcontractors, five percent (5%) of the amount due the Subcontractors.
 - .3 For each Subcontractor involved, for Work performed by that Subcontractor's own forces, twelve percent (12%) of the cost.
 - .4 For each Subcontractor involved, for Work performed by the Subcontractor's Subcontractors, five percent (5%) of the amount due the Sub-subcontractor.
 - .5 In order to facilitate checking of quotations for extras or credits, all proposals, except those so minor that their propriety can be seen by inspection, shall be accompanied by a complete itemization of costs including labor, materials and Subcontracts. Labor and materials shall be itemized in the manner prescribed above. Where major cost items are Subcontracts, they shall be itemized also.

END OF DOCUMENT 007300

SECTION 01 10 00 - SUMMARY

PART 1 - GENERAL

1.1 SUMMARY OF WORK

- A. Project: HVAC Upgrades and Interior Finishes at West Middle School.
- B. Owner: Rockford Public Schools District 205.
- C. The Work includes but is not limited to the following:
 - 1. HVAC Upgrades and interior finishes.
- D. Work Under Other Contracts:
 - General: Cooperate fully with separate contractors so work on those contracts may be carried
 out smoothly, without interfering with or delaying work under this Contract or other
 contracts. Coordinate the Work of this Contract with work performed under separate
 contracts.

1.2 WORK RESTRICTIONS

- A. Contractor's Use of Premises: During construction, Contractor will have limited use of site and building indicated.
 - Owner will occupy premises during construction. Perform construction during normal working hours (7 AM to 4 PM Monday thru Friday, other than holidays), unless otherwise agreed to in advance by Owner. Clean up work areas and return to a useable condition at the end of each work period.

PART 2 - PRODUCTS (Not Applicable)

PART 3 - EXECUTION (Not Applicable)

END OF SECTION 01 10 00

SECTION 01 20 00 - PRICE AND PAYMENT PROCEDURES

PART 1 - GENERAL

1.1 ALLOWANCES

- A. Allowances shall include cost to Contractor of specific products and materials ordered by Owner under allowance and shall include taxes, freight, and delivery to Project site. Allowances are specified in the Bid Form.
- B. Obtain three proposals for each allowance and submit to Architect with recommendations. Purchase products and systems selected by Owner.
- C. Advise Architect of the date when selection and purchase of each product or system described by an allowance must be completed to avoid delaying the Work.
- D. Submit invoices to show cost of products furnished under each allowance. Reconciliation of Allowance amounts with actual costs will be by Change Order.

1.2 ALTERNATES

A. An alternate is an amount proposed by bidder for certain work that may be added to or deducted from the Base Bid amount if Owner accepts the Alternate. The cost or credit for each alternate is the net addition to or deduction from the Contract Sum to incorporate the Alternate into the Work. No other adjustments are made to the Contract Sum. B. Alternates are specified in the Bid Form.

1.3 UNIT PRICES

- A. A unit price is an amount proposed by bidders and stated on the Bid Form as a price per unit of measurement for work added to or deducted from the Contract Sum by appropriate modification, if estimated quantities of Work required by the Contract Documents are increased or decreased. Unit prices are specified in the Bid Form.
- B. Unit prices include all necessary material, plus cost for delivery, installation, insurance, overhead, and profit.

PART 2 - PRODUCTS (Not Applicable)

PART 3 - EXECUTION (Not Applicable)

END OF SECTION 01 20 00

SECTION 01 30 00 - ADMINISTRATIVE REQUIREMENTS

PART 1 - GENERAL

1.1 PROJECT MANAGEMENT AND COORDINATION

- A. Coordinate construction to ensure efficient and orderly installation of each part of the Work.
- B. Schedule and conduct progress meetings at Project site at regular intervals. Notify Owner and Architect of meeting dates and times. Require attendance of each subcontractor or other entity concerned with current progress or involved with planning or coordination of future activities.
 - 1. Record minutes and distribute to everyone concerned, including Owner and Architect.

1.2 SUBMITTAL PROCEDURES

- A. Coordinate each submittal with fabrication, purchasing, testing, delivery, other submittals, and related activities that require sequential activity.
 - 1. No extension of the Contract Time will be authorized because of failure to transmit submittals enough in advance of the Work to permit processing, including resubmittals.
 - 2. Prepare submittals as PDF packages and transmit to Architect by email.
 - 1 Email Address: DocumentAdmin@Larsondarby.com.
 - 2 Architect will annotate PDF submittal and return.
 - 3. Architect will return submittals, without review, received from sources other than Contractor.
- B. Place a permanent label or title block on each submittal for identification. Provide a space approximately 6 by 8 inches on label or beside title block to record Contractor's review and approval markings and action taken by Architect. Include the following information on the label:
 - 1. Project name.
 - 2. Date.
 - 3. Name and address of Contractor.
 - 4. Name and address of subcontractor or supplier.
 - 5. Number and title of appropriate Specification Section.
- C. Identify deviations from the Contract Documents on submittals.
- D. Contractor's Construction Schedule Submittal Procedure: Submit two copies of schedule within 10 working days after date established for Commencement of the Work.

PART 2 - PRODUCTS

2.1 ACTION SUBMITTALS

- A. Product Data: Mark each copy to show applicable products and options. Include the following:
 - Manufacturer's written recommendations, product specifications, and installation instructions.
 - 2. Testing by recognized testing agency.
 - 3. Compliance with specified standards and requirements.

- B. Shop Drawings: Prepare Project-specific information, drawn accurately to scale. Do not base Shop Drawings on reproductions of the Contract Documents or standard printed data. Submit on sheets at least 8-1/2 by 11 inches but no larger than 30 by 42 inches. Include the following:
 - 1. Dimensions and identification of products.
 - 2. Fabrication and installation drawings and roughing-in and setting diagrams.
- C. Samples: Submit Samples for review of kind, color, pattern, and texture and for a comparison of these characteristics between submittal and actual component as delivered and installed. Include name of manufacturer and product name on label.
 - 1. If variation is inherent in material or product, submit at least three sets of paired units that show variations.

2.2 INFORMATION SUBMITTALS

- A. Qualification Data: Include lists of completed projects with project names and addresses, names and addresses of architects and owners, and other information specified.
- B. Product Certificates: Prepare written statements on manufacturer's letterhead certifying that product complies with requirements in the Contract Documents.

2.3 DELEGATED DESIGN

- A. Performance and Design Criteria: Where professional design services or certifications by a design professional are specifically required of Contractor by the Contract Documents, provide products and systems complying with specific performance and design criteria indicated.
 - 1. If criteria indicated are not sufficient to perform services or certification required, submit a written request for additional information to Architect.
- B. Delegated-Design Submittal: In addition to Shop Drawings, Product Data, and other required submittals, submit three copies of a statement, signed and sealed by the responsible design professional, for each product and system specifically assigned to Contractor to be designed or certified by a design professional.
 - 1. Indicate that products and systems comply with performance and design criteria in the Contract Documents. Include list of codes, loads, and other factors used in performing these services.

2.4 CONTRACTOR'S CONSTRUCTION SCHEDULE

- A. Gantt-Chart Schedule: Submit a comprehensive, fully developed, horizontal Gantt-chart-type schedule within 10 days of date established for the Notice of Award.
- B. Preparation: Indicate each significant construction activity separately. Identify first workday of each week with a continuous vertical line.

PART 3 - EXECUTION

3.1 SUBMITTAL REVIEW

- A. Review each submittal and check for coordination with other Work of the Contract and for compliance with the Contract Documents. Note corrections and field dimensions. Mark with approval stamp before submitting to Architect.
- B. Architect will review each action submittal, make marks to indicate corrections or modifications required, stamp and mark as appropriate to indicate action taken, and return.

3.2 CONTRACTOR'S CONSTRUCTION SCHEDULE

- A. Distribute copies of approved schedule to Owner, Architect, subcontractors, testing and inspecting agencies, and parties identified by Contractor with a need-to-know schedule responsibility. When revisions are made, distribute updated schedules to the same parties.
- B. Updating: At monthly intervals, update schedule to reflect actual construction progress and activities.
 - 1. As the Work progresses, indicate Actual Completion percentage for each activity.

END OF SECTION 01 30 00

SECTION 01 50 00 - TEMPORARY FACILITIES AND CONTROLS

PART 1 - GENERAL

1.1 SECTION REQUIREMENTS

- A. Use Charges: Cost or use charges for temporary facilities shall be included in the Contract Sum.
- B. Use water and electric power from Owner's existing system without metering and without payment of use charges.
- C. Electrical Service: Comply with NEMA, NECA, and UL standards and regulations for temporary electric service. Install service to comply with NFPA 70.

PART 2 - PRODUCTS (Not Applicable)

PART 3 - EXECUTION

3.1 TEMPORARY UTILITIES

A. Sanitary Facilities: Contractor may use existing toilets when the building is not occupied by students.

3.2 TEMPORARY SUPPORT FACILITIES

- A. Provide waste-collection containers in sizes adequate to handle waste from construction operations. Collect waste daily and, when containers are full, legally dispose of waste off-site. Comply with requirements of authorities having jurisdiction.
- B. Install project identification and other signs in locations approved by Owner to inform the public and persons seeking entrance to Project.

3.3 TEMPORARY SECURITY AND PROTECTION FACILITIES

- A. Provide temporary environmental protection, operate temporary facilities, and conduct construction in ways and by methods that comply with environmental regulations and that minimize possible air, waterway, and subsoil contamination or pollution or other undesirable effects.
- B. Comply with requirements of authorities having jurisdiction for erecting structurally adequate barricades, including warning signs and lighting.

END OF SECTION 01 50 00

SECTION 01 60 00 - PRODUCT REQUIREMENTS

PART 1 - GENERAL

1.1 SECTION REQUIREMENTS

- A. The term "product" includes the terms "material," "equipment," "system," and terms of similar intent.
- B. Product Substitutions: Substitutions include changes in products, materials, equipment, and methods of construction from those required by the Contract Documents and proposed by Contractor after award of the Contract.
 - 1. Submit three copies of each request for product substitution.
 - 2. Submit requests within ten days after the Notice of Award.
 - 3. Do not submit unapproved substitutions on Shop Drawings or other submittals.
 - 4. Identify product to be replaced and show compliance with requirements for substitutions. Include a detailed comparison of significant qualities of proposed substitution with those of the Work specified, a list of changes needed to other parts of the Work required to accommodate proposed substitution, and any proposed changes in the Contract Sum or the Contract Time should the substitution be accepted.
 - 5. Architect will review the proposed substitution and notify Contractor of its acceptance or rejection.

C. Comparable Product Requests:

- 1. Submit three copies of each request for comparable product. Do not submit unapproved products on Shop Drawings or other submittals.
- 2. Identify product to be replaced and show compliance with requirements for comparable product requests. Include a detailed comparison of significant qualities of proposed substitution with those of the Work specified.
- 3. Architect will review the proposed product and notify Contractor of its acceptance or rejection.
- D. Deliver, store, and handle products using means and methods that will prevent damage, deterioration, and loss, including theft. Comply with manufacturer's written instructions.
 - 1. Schedule delivery to minimize long-term storage at Project site and to prevent overcrowding of construction spaces.
 - 2. Deliver products to Project site in manufacturer's original sealed container or packaging, complete with labels and instructions for handling, storing, unpacking, protecting, and installing.
 - 3. Inspect products on delivery to ensure compliance with the Contract Documents and to ensure that products are undamaged and properly protected.
 - 4. Store materials in a manner that will not endanger Project structure.
 - 5. Store products that are subject to damage by the elements, under cover in a weathertight enclosure above ground, with ventilation adequate to prevent condensation.
- E. Warranties specified in other Sections shall be in addition to, and run concurrent with, other warranties required by the Contract Documents. Manufacturer's disclaimers and limitations on product warranties do not relieve Contractor of obligations under requirements of the Contract Documents.

PART 2 - PRODUCTS

2.1 PRODUCT OPTIONS

- A. Provide products that comply with the Contract Documents, are undamaged, and are new at the time of installation.
 - 1. Provide products complete with accessories, trim, finish, and other devices and components needed for a complete installation and the intended use and effect.
 - 2. Descriptive, performance, and reference standard requirements in the Specifications establish "salient characteristics" of products.

B. Product Selection Procedures:

- 1. Where Specifications name a single product or manufacturer, provide the item indicated that complies with requirements, or Owner-approved equal.
- 2. Where Specifications include a list of names of products or manufacturers, provide one of the items indicated that complies with requirements, or Owner-approved equal.
- 3. Where Specifications include a list of names of products or manufacturers, accompanied by the term "available products" or "available manufacturers," provide one of the named items that complies with requirements, or Owner-approved equal. Comply with provisions for "comparable product requests" for consideration of an unnamed product.
- 4. Where Specifications name a product as the "basis-of-design" and include a list of manufacturers, provide the named product, or Owner-approved equal. Comply with provisions for "comparable product requests" for consideration of an unnamed product by the other named manufacturers.
- 5. Where Specifications name a single product as the "basis-of-design" and no other manufacturers are named, provide the named product or Owner-approved equal. Comply with provisions for "comparable product requests" for consideration of an unnamed product by another manufacturer.
- C. Unless otherwise indicated, Architect will select color, pattern, and texture of each product from manufacturer's full range of options that includes both standard and premium items.

PART 3 - EXECUTION (Not Applicable)

END OF SECTION 01 60 00

SECTION 01 70 00 - EXECUTION AND CLOSEOUT REQUIREMENTS

PART 1 - GENERAL

1.1 CLOSEOUT SUBMITTALS

- A. Record Drawings: Maintain a set of prints of the Contract Drawings as Record Drawings. Mark to show actual installation where installation varies from that shown originally.
 - 1. Identify and date each Record Drawing; include the designation "PROJECT RECORD DRAWING" in a prominent location.
- B. Operation and Maintenance Data: Submit one copy of manual. Organize data into three-ring binders with identification on front and spine of each binder, and envelopes for folded drawings. Include the following:
 - 1. Manufacturer's operation and maintenance documentation.
 - 2. Video on CD or flashdrive of training seminar for Owner use.
 - 3. Maintenance and service schedules.
 - 4. Maintenance service contracts.
 - 5. Emergency instructions.
 - 6. Spare parts list.
 - 7. Copies of warranties.

PART 2 - PRODUCTS (Not Applicable)

PART 3 - EXECUTION

3.1 EXAMINATION AND PREPARATION

- A. Examine substrates and conditions for compliance with manufacturer's written requirements including, but not limited to, surfaces that are sound, level, plumb, smooth, clean, and free of deleterious substances; substrates within installation tolerances; and application conditions within environmental limits. Proceed with installation only after unsatisfactory conditions have been corrected.
- B. Before proceeding to lay out the Work, verify layout information shown on Drawings.
- C. Take field measurements as required to fit the Work properly. Where fabricated products are to be fitted to other construction, verify dimensions by field measurement before fabrication and, when possible, allow for fitting and trimming during installation.

3.2 CUTTING AND PATCHING

- A. Cutting and Patching: Comply with requirements for and limitations on cutting and patching of construction elements.
 - Structural Elements: When cutting and patching structural elements, notify Architect of locations and details of cutting and await directions from Architect before proceeding. Shore, brace, and support structural elements during cutting and patching. Do not cut and patch structural elements in a manner that could change their load-carrying capacity or increase deflection.

- 2. Operational Elements: Do not cut and patch operating elements and related components in a manner that results in reducing their capacity to perform as intended or that results in increased maintenance or decreased operational life or safety.
- Other Construction Elements: Do not cut and patch other construction elements or components in a manner that could change their load-carrying capacity, that results in reducing their capacity to perform as intended, or that results in increased maintenance or decreased operational life or safety.
- 4. Visual Elements: Do not cut and patch construction in a manner that results in visual evidence of cutting and patching. Do not cut and patch exposed construction in a manner that would, in Architect's opinion, reduce the building's aesthetic qualities. Remove and replace construction that has been cut and patched in a visually unsatisfactory manner.
- B. Cutting and Patching, General: Employ skilled workers to perform cutting and patching. Proceed with cutting and patching at the earliest feasible time, and complete without delay.
 - 1. Cut in-place construction to provide for installation of other components or performance of other construction, and subsequently patch as required to restore surfaces to their original condition.
- C. Protection: Protect in-place construction during cutting and patching to prevent damage. Provide protection from adverse weather conditions for portions of Project that might be exposed during cutting and patching operations.
- D. Cutting: Cut in-place construction by sawing, drilling, breaking, chipping, grinding, and similar operations, using methods least likely to damage elements retained or adjoining construction.
 - 1. In general, use hand or small power tools designed for sawing and grinding, not hammering and chopping. Cut holes and slots neatly to minimum size required, and with minimum disturbance of adjacent surfaces. Temporarily cover openings when not in use.
 - 2. Finished Surfaces: Cut or drill from the exposed or finished side into concealed surfaces.
 - Concrete and Masonry: Cut using a cutting machine, such as an abrasive saw or a diamondcore drill.
 - 4. Mechanical and Electrical Services: Cut off pipe or conduit in walls or partitions to be removed. Cap, valve, or plug and seal remaining portion of pipe or conduit to prevent entrance of moisture or other foreign matter after cutting.
 - 5. Proceed with patching after construction operations requiring cutting are complete.
- E. Patching: Patch construction by filling, repairing, refinishing, closing up, and similar operations following performance of other work. Patch with durable seams that are as invisible as practicable. Provide materials and comply with installation requirements specified in other Sections, where applicable.
 - 1. Exposed Finishes: Restore exposed finishes of patched areas and extend finish restoration into retained adjoining construction in a manner that will minimize evidence of patching and refinishing.
 - Floors and Walls: Where walls or partitions that are removed extend one finished area into another, patch and repair floor and wall surfaces in the new space. Provide an even surface of uniform finish, color, texture, and appearance. Remove in-place floor and wall coverings and replace with new materials, if necessary, to achieve uniform color and appearance.
 - 3. Ceilings: Patch, repair, or rehang in-place ceilings as necessary to provide an even-plane surface of uniform appearance.
 - 4. Exterior Building Enclosure: Patch components in a manner that restores enclosure to a weathertight condition and ensures thermal and moisture integrity of building enclosure.

3.3 INSTALLATION

A. Instruct Owner's personnel in operation, adjustment, and maintenance of products, equipment,

and systems.

- B. Comply with manufacturer's written instructions for installation. Anchor each product securely in place, accurately located and aligned with other portions of the Work. Clean exposed surfaces and protect from damage.
- C. Clean Project site and work areas daily, including common areas.

3.4 FINAL CLEANING

- A. Complete the following cleaning operations before requesting inspection for certification of Substantial Completion:
 - 1. Remove labels that are not permanent.
 - 2. Clean exposed finishes to a dust-free condition, free of stains, films, and foreign substances. Sweep concrete floors broom clean.
 - 3. Vacuum clean floors in areas of Work.
 - 4. Wipe surfaces of mechanical and electrical equipment. Remove excess lubrication. Clean plumbing fixtures. Clean light fixtures, lamps, globes, and reflectors.
 - 5. Clean Project site, yard, and grounds, in areas disturbed by construction activities. Sweep paved areas; remove stains, spills, and foreign deposits. Rake grounds to a smooth, eventextured surface.

3.5 CLOSEOUT PROCEDURES

- A. Substantial Completion: Before requesting Substantial Completion inspection, complete the following:
 - 1. Prepare a list of items to be completed and corrected (punch list), the value of items on the list, and reasons why the Work is not complete.
 - 2. Advise Owner of pending insurance changeover requirements.
 - 3. Submit specific warranties, maintenance service agreements, and similar documents.
 - 4. Obtain and submit releases permitting Owner unrestricted use of the Work and access to services and utilities. Include occupancy permits, operating certificates, and similar releases.
 - 5. Submit Record Drawings and Specifications, operation and maintenance manuals, and Similar final record information.
 - 6. Deliver tools, spare parts, extra materials, and similar items.
 - 7. Complete final cleaning requirements.
 - 8. Touch up and otherwise repair and restore marred exposed finishes to eliminate visual defects.
- B. Submit a written request for inspection for Substantial Completion. On receipt of request, Architect will proceed with inspection or advise Contractor of unfulfilled requirements. Architect will prepare the Certificate of Substantial Completion after inspection or will advise Contractor of items that must be completed or corrected before certificate will be issued. C. Request inspection for Final Completion, once the following are complete:
 - 1. Submit a copy of Substantial Completion inspection list stating that each item has been completed or otherwise resolved for acceptance.
- Request re-inspection when the Work identified in previous inspections as incomplete is completed or corrected.

D. Submit a written request for final inspection for acceptance. On receipt of request, Architect will proceed with inspection or advise Contractor of unfulfilled requirements. Architect will prepare final Certificate for Payment after inspection or will advise Contractor of items that must be completed or corrected before certificate will be issued.

3.6 DEMONSTRATION AND TRAINING

- A. Engage qualified instructors to instruct Owner's personnel to adjust, operate, and maintain systems, subsystems, and equipment not part of a system. Include a detailed review of the following:
 - 1. Include instruction for basis of system design and operational requirements, review of documentation, emergency procedures, operations, adjustments, troubleshooting, maintenance, and repairs.

END OF SECTION 01 70 00

SECTION 01 78 23 - OPERATION AND MAINTENANCE DATA

PART 1 - GENERAL

1.1 SUMMARY

- A. Section includes administrative and procedural requirements for preparing operation and maintenance manuals, including the following:
 - 1. Operation and maintenance documentation directory.
 - 2. Emergency manuals.
 - 3. Operation manuals for systems, subsystems, and equipment.
 - 4. Product maintenance manuals.

1.2 CLOSEOUT SUBMITTALS

- A. Manual Content: Operations and maintenance manual content is specified in individual Specification Sections to be reviewed at the time of Section submittals. Submit reviewed manual content formatted and organized as required by this Section.
 - 1. Where applicable, clarify and update reviewed manual content to correspond to revisions and field conditions.
- B. Format: Submit operations and maintenance manuals in the following format:
 - 1. PDF electronic file. Assemble each manual into a composite electronically indexed file. Submit on digital media acceptable to Owner.
 - a. Name each indexed document file in composite electronic index with applicable item name. Include a complete electronically linked operation and maintenance directory.
 - b. Enable inserted reviewer comments on draft submittals.
 - 2. Three paper copies. Include a complete operation and maintenance directory. Enclose title pages and directories in clear plastic sleeves. Owner will return two copies.
- C. Manual Submittal: Submit each manual in final form prior to requesting inspection for Substantial Completion and at least 15 days before commencing demonstration and training. Owner will return copy with comments.
 - 1. Correct or revise each manual to comply with Owner's comments. Submit copies of each corrected manual within 15 days of receipt of Owner's comments and prior to commencing demonstration and training.

PART 2 - PRODUCTS

2.1 REQUIREMENTS FOR EMERGENCY, OPERATION, AND MAINTENANCE MANUALS

- A. Directory: Prepare a single, comprehensive directory of emergency, operation, and maintenance data and materials, listing items and their location to facilitate ready access to desired information.
- B. Organization: Unless otherwise indicated, organize each manual into a separate section for each system and subsystem, and a separate section for each piece of equipment not part of a system. Each manual shall contain the following materials, in the order listed:
 - 1. Title page.
 - 2. Table of contents.
 - 3. Manual contents.

- C. Title Page: Include the following information:
 - Subject matter included in manual.
 - 2. Name and address of Project.
 - 3. Name and address of Owner.
 - 4. Date of submittal.
 - 5. Name and contact information for Contractor.
 - 6. Name and contact information for Architect.
 - 7. Names and contact information for major consultants to the Owner that designed the systems contained in the manuals.
 - 8. Cross-reference to related systems in other operation and maintenance manuals.
- D. Table of Contents: List each product included in manual, identified by product name, indexed to the content of the volume, and cross-referenced to Specification Section number in Project Manual.
- E. Manual Contents: Organize into sets of manageable size. Arrange contents alphabetically by system, subsystem, and equipment. If possible, assemble instructions for subsystems, equipment, and components of one system into a single binder.
- F. Manuals, Electronic Files: Submit manuals in the form of a multiple file composite electronic PDF file for each manual type required.
 - Electronic Files: Use electronic files prepared by manufacturer where available. Where scanning of paper documents is required, configure scanned file for minimum readable file size.
 - 2. File Names and Bookmarks: Enable bookmarking of individual documents based on file names. Name document files to correspond to system, subsystem, and equipment names used in manual directory and table of contents. Group documents for each system and subsystem into individual composite bookmarked files, then create composite manual, so that resulting bookmarks reflect the system, subsystem, and equipment names in a readily navigated file tree. Configure electronic manual to display bookmark panel on opening file.
- G. Manuals, Paper Copy: Submit manuals in the form of hard copy, bound and labeled volumes.
 - Binders: Heavy-duty, three-ring, vinyl-covered, loose-leaf binders, in thickness necessary
 to accommodate contents, sized to hold 8-1/2-by-11-inch paper; with clear plastic sleeve
 on spine to hold label describing contents and with pockets inside covers to hold folded
 oversize sheets.
 - a. Identify each binder on front and spine, with printed title "OPERATION AND MAINTENANCE MANUAL," Project title or name, and subject matter of contents. Indicate volume number for multiple-volume sets.
 - Dividers: Heavy-paper dividers with plastic-covered tabs for each section of the manual.
 Mark each tab to indicate contents. Include typed list of products and major components of
 equipment included in the section on each divider, cross-referenced to Specification
 Section number and title of Project Manual.
 - 3. Protective Plastic Sleeves: Transparent plastic sleeves designed to enclose diagnostic software storage media for computerized electronic equipment.
 - 4. Drawings: Attach reinforced, punched binder tabs on drawings and bind with text.
 - a. If oversize drawings are necessary, fold drawings to same size as text pages and use as foldouts.
 - b. If drawings are too large to be used as foldouts, fold and place drawings in labeled envelopes and bind envelopes in rear of manual. At appropriate locations in manual, insert typewritten pages indicating drawing titles, descriptions of contents, and drawing locations.

2.2 EMERGENCY MANUALS

- A. Content: Organize manual into a separate section for each of the following:
 - 1. Type of emergency.
 - 2. Emergency instructions.
 - 3. Emergency procedures.
- B. Type of Emergency: Where applicable for each type of emergency indicated below, include instructions and procedures for each system, subsystem, piece of equipment, and component:
 - 1. Fire.
 - 2. Flood.
 - Gas leak.
 - 4. Water leak.
 - 5. Power failure.
 - 6. Water outage.
 - 7. System, subsystem, or equipment failure.
 - 8. Chemical release or spill.
- C. Emergency Instructions: Describe and explain warnings, trouble indications, error messages, and similar codes and signals. Include responsibilities of Owner's operating personnel for notification of Installer, supplier, and manufacturer to maintain warranties.
- D. Emergency Procedures: Include the following, as applicable:
 - 1. Instructions on stopping.
 - 2. Shutdown instructions for each type of emergency.
 - 3. Operating instructions for conditions outside normal operating limits.
 - 4. Required sequences for electric or electronic systems.
 - 5. Special operating instructions and procedures.

2.3 OPERATION MANUALS

- A. Content: In addition to requirements in this Section, include operation data required in individual Specification Sections and the following information:
 - 1. System, subsystem, and equipment descriptions. Use designations for systems and equipment indicated on Contract Documents.
 - 2. Performance and design criteria if Contractor is delegated design responsibility.
 - 3. Operating standards.
 - 4. Operating procedures.
 - 5. Operating logs.
 - 6. Wiring diagrams.
 - 7. Control diagrams.
 - 8. Piped system diagrams.
 - 9. Precautions against improper use.
 - 10. License requirements including inspection and renewal dates.
- B. Descriptions: Include the following:
 - Product name and model number. Use designations for products indicated on Contract Documents.
 - Manufacturer's name.
 - 3. Equipment identification with serial number of each component.
 - 4. Equipment function.

- 5. Operating characteristics.
- 6. Limiting conditions.
- 7. Performance curves.
- 8. Engineering data and tests.
- 9. Complete nomenclature and number of replacement parts.
- C. Operating Procedures: Include the following, as applicable:
 - 1. Startup procedures.
 - 2. Equipment or system break-in procedures.
 - 3. Routine and normal operating instructions.
 - 4. Regulation and control procedures.
 - 5. Instructions on stopping.
 - 6. Normal shutdown instructions.
 - 7. Seasonal and weekend operating instructions.
 - 8. Required sequences for electric or electronic systems.
 - 9. Special operating instructions and procedures.
- D. Systems and Equipment Controls: Describe the sequence of operation, and diagram controls as installed.
- E. Piped Systems: Diagram piping as installed, and identify color-coding where required for identification.

2.4 PRODUCT MAINTENANCE MANUALS

- A. Content: Organize manual into a separate section for each product, material, and finish. Include source information, product information, maintenance procedures, repair materials and sources, and warranties and bonds, as described below.
- B. Source Information: List each product included in manual, identified by product name and arranged to match manual's table of contents. For each product, list name, address, and telephone number of Installer or supplier and maintenance service agent, and cross-reference Specification Section number and title in Project Manual.
- C. Product Information: Include the following, as applicable:
 - 1. Product name and model number.
 - 2. Manufacturer's name.
 - 3. Color, pattern, and texture.
 - 4. Material and chemical composition.
 - 5. Reordering information for specially manufactured products.
- D. Maintenance Procedures: Include manufacturer's written recommendations and the following:
 - 1. Inspection procedures.
 - 2. Types of cleaning agents to be used and methods of cleaning.
 - 3. List of cleaning agents and methods of cleaning detrimental to product.
 - 4. Schedule for routine cleaning and maintenance.
 - 5. Repair instructions.
- E. Repair Materials and Sources: Include lists of materials and local sources of materials and related services.

F. Warranties and Bonds: Include copies of warranties and bonds and lists of circumstances and conditions that would affect validity of warranties or bonds.

2.5 SYSTEMS AND EQUIPMENT MAINTENANCE MANUALS

- A. Content: For each system, subsystem, and piece of equipment not part of a system, include source information, manufacturers' maintenance documentation, maintenance procedures, maintenance and service schedules, spare parts list and source information, maintenance service contracts, and warranty and bond information, as described below.
- B. Source Information: List each system, subsystem, and piece of equipment included in manual, identified by product name and arranged to match manual's table of contents. For each product, list name, address, and telephone number of Installer or supplier and maintenance service agent, and cross-reference Specification Section number and title in Project Manual.
- C. Manufacturers' Maintenance Documentation: Manufacturers' maintenance documentation including the following information for each component part or piece of equipment:
 - 1. Standard maintenance instructions and bulletins.
 - 2. Drawings, diagrams, and instructions required for maintenance, including disassembly and component removal, replacement, and assembly.
 - 3. Identification and nomenclature of parts and components.
 - 4. List of items recommended to be stocked as spare parts.
- D. Maintenance Procedures: Include the following information and items that detail essential maintenance procedures:
 - 1. Test and inspection instructions.
 - 2. Troubleshooting guide.
 - 3. Precautions against improper maintenance.
 - 4. Disassembly; component removal, repair, and replacement; and reassembly instructions.
 - 5. Aligning, adjusting, and checking instructions.
 - 6. Demonstration and training video recording, if available.
- E. Maintenance and Service Schedules: Include service and lubrication requirements, list of required lubricants for equipment, and separate schedules for preventive and routine maintenance and service with standard time allotment. Spare Parts List and Source Information: Include lists of replacement and repair parts, with parts identified and cross-referenced to manufacturers' maintenance documentation and local sources of maintenance materials and related services.
- F. Maintenance Service Contracts: Include copies of maintenance agreements with name and telephone number of service agent.
- G. Warranties and Bonds: Include copies of warranties and bonds and lists of circumstances and conditions that would affect validity of warranties or bonds.

PART 3 - EXECUTION

3.1 MANUAL PREPARATION

A. Emergency Manual: Assemble a complete set of emergency information indicating procedures for use by emergency personnel and by Owner's operating personnel for types of emergencies indicated.

- B. Product Maintenance Manual: Assemble a complete set of maintenance data indicating care and maintenance of each product, material, and finish incorporated into the Work.
- C. Operation and Maintenance Manuals: Assemble a complete set of operation and maintenance data indicating operation and maintenance of each system, subsystem, and piece of equipment not part of a system.
- D. Manufacturers' Data: Where manuals contain manufacturers' standard printed data, include only sheets pertinent to product or component installed. Mark each sheet to identify each product or component incorporated into the Work. If data include more than one item in a tabular format, identify each item using appropriate references from the Contract Documents. Identify data applicable to the Work and delete references to information not applicable.
- E. Drawings: Prepare drawings supplementing manufacturers' printed data to illustrate the relationship of component parts of equipment and systems and to illustrate control sequence and flow diagrams. Coordinate these drawings with information contained in record Drawings to ensure correct illustration of completed installation.
 - Do not use original project record documents as part of operation and maintenance manuals.

END OF SECTION 017823

SECTION 01 78 39 - PROJECT RECORD DOCUMENTS

PART 1 - GENERAL

1.1 SUMMARY

- A. Section includes administrative and procedural requirements for project record documents, including the following:
 - 1. Record Drawings.
 - 2. Record Specifications.
 - 3. Record Product Data.

B. Related Requirements:

 Section 01 78 23 "Operation and Maintenance Data" for operation and maintenance manual requirements.

1.2 CLOSEOUT SUBMITTALS

- A. Record Drawings: Comply with the following:
 - 1. Number of Copies: Submit copies of record Drawings as follows:
 - a. Initial Submittal:
 - Submit PDF electronic files of scanned record prints and one set(s) of file prints.
 - 2) Owner will indicate whether general scope of changes, additional information recorded, and quality of drafting are acceptable.
 - b. Final Submittal:
 - 1) Submit PDF electronic files of scanned record prints and one set(s) of prints.
 - 2) Print each drawing, whether or not changes and additional information were recorded.
- B. Record Specifications: Submit one paper copy and annotated PDF electronic files of Project's Specifications, including addenda and contract modifications.
- C. Record Product Data: Submit one paper copy and annotated PDF electronic files and directories of each submittal.

PART 2 - PRODUCTS

2.1 RECORD DRAWINGS

- A. Record Prints: Maintain one set of marked-up paper copies of the Contract Drawings and Shop Drawings, incorporating new and revised Drawings as modifications are issued.
 - 1. Preparation: Mark record prints to show the actual installation where installation varies from that shown originally. Require individual or entity who obtained record data, whether individual or entity is Installer, subcontractor, or similar entity, to provide information for preparation of corresponding marked-up record prints.
 - a. Give particular attention to information on concealed elements that would be difficult to identify or measure and record later.
 - b. Record data as soon as possible after obtaining it.
 - c. Record and check the markup before enclosing concealed installations.
 - 2. Mark the Contract Drawings and Shop Drawings completely and accurately. Use personnel proficient at recording graphic information in production of marked-up record prints.
 - 3. Mark record sets with erasable, red-colored pencil. Use other colors to distinguish between changes for different categories of the Work at same location.

- 4. Note Construction Change Directive numbers, alternate numbers, Change Order numbers, and similar identification, where applicable.
- B. Record Digital Data Files: Immediately before inspection for Certificate of Substantial Completion, review marked-up record prints with Owner. When authorized, prepare a full set of corrected digital data files of the Contract Drawings, as follows:
 - 1. Format: Annotated PDF electronic file with comment function enabled.
 - 2. Incorporate changes and additional information previously marked on record prints. Delete, redraw, and add details and notations where applicable.
 - 3. Refer instances of uncertainty to Owner for resolution.
- C. Format: Identify and date each record Drawing; include the designation "PROJECT RECORD DRAWING" in a prominent location.
 - Record Prints: Organize record prints and newly prepared record Drawings into manageable sets. Bind each set with durable paper cover sheets. Include identification on cover sheets.
 - 2. Format: Annotated PDF electronic file with comment function enabled.
 - 3. Record Digital Data Files: Organize digital data information into separate electronic files that correspond to each sheet of the Contract Drawings. Name each file with the sheet identification. Include identification in each digital data file.
 - 4. Identification: As follows:
 - a. Project name.
 - b. Date.
 - c. Designation "PROJECT RECORD DRAWINGS."
 - d. Name of Owner.
 - e. Name of Contractor.

2.2 RECORD SPECIFICATIONS

- A. Preparation: Mark Specifications to indicate the actual product installation where installation varies from that indicated in Specifications, addenda, and contract modifications.
 - 1. Give particular attention to information on concealed products and installations that cannot be readily identified and recorded later.
 - 2. Mark copy with the proprietary name and model number of products, materials, and equipment furnished, including substitutions and product options selected.
 - 3. Record the name of manufacturer, supplier, Installer, and other information necessary to provide a record of selections made.
 - 4. Note related Change Orders, record Product Data, and record Drawings where applicable.
- B. Format: Submit record Specifications as annotated PDF electronic file.

2.3 RECORD PRODUCT DATA

- A. Preparation: Mark Product Data to indicate the actual product installation where installation varies substantially from that indicated in Product Data submittal.
 - 1. Give particular attention to information on concealed products and installations that cannot be readily identified and recorded later.
 - 2. Include significant changes in the product delivered to Project site and changes in manufacturer's written instructions for installation.
 - 3. Note related Change Orders, record Specifications, and record Drawings where applicable.
- B. Format: Submit record Product Data as annotated PDF electronic file.

2.4 MISCELLANEOUS RECORD SUBMITTALS

- A. Assemble miscellaneous records required by other Specification Sections for miscellaneous record keeping and submittal in connection with actual performance of the Work. Bind or file miscellaneous records and identify each, ready for continued use and reference.
- B. Format: Submit miscellaneous record submittals as PDF electronic file.

PART 3 - EXECUTION

3.1 RECORDING AND MAINTENANCE

- A. Recording: Maintain one copy of each submittal during the construction period for project record document purposes. Post changes and revisions to project record documents as they occur; do not wait until end of Project.
- B. Maintenance of Record Documents and Samples: Store record documents and Samples in the field office apart from the Contract Documents used for construction. Do not use project record documents for construction purposes. Maintain record documents in good order and in a clean, dry, legible condition, protected from deterioration and loss. Provide access to project record documents for Owner's reference during normal working hours.

END OF SECTION 01 78 39

SECTION 05 50 00 - METAL FABRICATIONS

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
- B. Products furnished, but not installed, under this Section include the following:
 - Loose steel lintels.

1.2 ACTION SUBMITTALS

A. Shop Drawings: Show fabrication and installation details.

PART 2 - PRODUCTS

2.1 METALS

- A. Metal Surfaces, General: Provide materials with smooth, flat surfaces unless otherwise indicated. For metal fabrications exposed to view in the completed Work, provide materials without seam marks, roller marks, rolled trade names, or blemishes.
- B. Steel Plates, Shapes, and Bars: ASTM A 36/A 36M.

2.2 MISCELLANEOUS MATERIALS

- A. Universal Shop Primer: Fast-curing, lead- and chromate-free, universal modified-alkyd primer complying with MPI#79 and compatible with topcoat.
- B. Galvanizing Repair Paint: High-zinc-dust-content paint complying with SSPC-Paint 20 and compatible with paints specified to be used over it.

2.3 LOOSE STEEL LINTELS

- A. Fabricate loose steel lintels from steel angles and shapes of size indicated for openings and recesses in masonry walls and partitions at locations indicated.
- B. Galvanize loose steel lintels located in exterior walls.

2.4 FINISHES, GENERAL

A. Finish metal fabrications after assembly.

2.5 STEEL AND IRON FINISHES

- A. Galvanizing: Hot-dip galvanize items as indicated to comply with ASTM A 153/A 153M for steel and iron hardware and with ASTM A 123/A 123M for other steel and iron products.
- B. Shop prime iron and steel items not indicated to be galvanized.
 - 1. Shop prime with universal shop primer.
- C. Preparation for Shop Priming: Prepare surfaces to comply with SSPC-SP 3, "Power Tool Cleaning."

D. Shop Priming: Apply shop primer to comply with SSPC-PA 1, "Paint Application Specification No. 1: Shop, Field, and Maintenance Painting of Steel," for shop painting.

PART 3 - EXECUTION

3.1 INSTALLING LINTELS

A. Provide lintels in openings in masonry partitions in accordance with lintel schedule on Drawings.

END OF SECTION 05 50 00

SECTION 07 84 13 - PENETRATION FIRESTOPPING

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes firestopping systems for new penetrations, and for existing penetrations left after removal of existing radiator piping.:
 - 1. Penetrations in fire-resistance-rated walls.
 - 2. Penetrations in horizontal assemblies.
 - 3. Penetrations in smoke barriers.

1.2 PREINSTALLATION MEETINGS

A. Preinstallation Conference: Conduct conference at Project site.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Product Schedule: For each penetration firestopping system. Include location, illustration of firestopping system, and design designation of qualified testing and inspecting agency.
 - Engineering Judgments: Where Project conditions require modification to a qualified testing and inspecting agency's illustration for a particular penetration firestopping system, submit illustration, with modifications marked, approved by penetration firestopping system manufacturer's fire-protection engineer as an engineering judgment or equivalent fire-resistance-rated assembly. Obtain approval of authorities having jurisdiction prior to submittal.

1.4 INFORMATIONAL SUBMITTALS

A. Product test reports.

1.5 CLOSEOUT SUBMITTALS

A. Installer Certificates: From Installer indicating that penetration firestopping systems have been installed in compliance with requirements and manufacturer's written instructions.

1.6 QUALITY ASSURANCE

A. Installer Qualifications: A firm that has been approved by FM Global according to FM Global 4991, "Approval of Firestop Contractors," or been evaluated by UL and found to comply with its "Qualified Firestop Contractor Program Requirements."

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Fire-Test-Response Characteristics:
 - 1. Perform penetration firestopping system tests by a qualified testing agency acceptable to authorities having jurisdiction.
 - 2. Test per testing standards referenced in "Penetration Firestopping Systems" Article. Provide rated systems complying with the following requirements:

- a. Penetration firestopping systems shall bear classification marking of a qualified testing agency.
 - 1) UL in its "Fire Resistance Directory."
 - 2) Intertek Group in its "Directory of Listed Building Products."
 - 3) FM Global in its "Building Materials Approval Guide."

2.2 PENETRATION FIRESTOPPING SYSTEMS

- A. Penetration Firestopping Systems: Systems that resist spread of fire, passage of smoke and other gases, and maintain original fire-resistance rating of construction penetrated. Penetration firestopping systems shall be compatible with one another, with the substrates forming openings, and with penetrating items if any.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. 3M Fire Protection Products.
 - b. A/D Fire Protection Systems Inc.
 - c. Hilti, Inc.
 - d. International Fireproof Technology Inc.
 - e. NUCO Inc.
 - f. Specified Technologies, Inc.
- B. Penetrations in Fire-Resistance-Rated Walls: Penetration firestopping systems with ratings determined per ASTM E 814 or UL 1479, based on testing at a positive pressure differential of 0.01-inch wg.
 - 1. F-Rating: Not less than the fire-resistance rating of constructions penetrated.
- C. Penetrations in Horizontal Assemblies: Penetration firestopping systems with ratings determined per ASTM E 814 or UL 1479, based on testing at a positive pressure differential of 0.01-inch wg.
 - 1. F-Rating: At least one hour, but not less than the fire-resistance rating of constructions penetrated.
 - 2. T-Rating: At least one hour, but not less than the fire-resistance rating of constructions penetrated except for floor penetrations within the cavity of a wall.
 - 3. W-Rating: Provide penetration firestopping systems showing no evidence of water leakage when tested according to UL 1479.
- D. Penetrations in Smoke Barriers: Penetration firestopping systems with ratings determined per UL 1479, based on testing at a positive pressure differential of 0.30-inch wg.
 - 1. L-Rating: Not exceeding 5.0 cfm/sq. ft. of penetration opening at and no more than 50-cfm cumulative total for any 100 sq. ft. at both ambient and elevated temperatures.
- E. Exposed Penetration Firestopping Systems: Flame-spread and smoke-developed indexes of less than 25 and 450, respectively, per ASTM E 84.
- F. Accessories: Provide components for each penetration firestopping system that are needed to install fill materials and to maintain ratings required. Use only those components specified by penetration firestopping system manufacturer and approved by qualified testing and inspecting agency for conditions indicated.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Examine substrates and conditions, with Installer present, for compliance with requirements for opening configurations, penetrating items, substrates, and other conditions affecting performance of the Work.

- B. General: Install penetration firestopping systems to comply with manufacturer's written installation instructions and published drawings for products and applications.
- C. Install forming materials and other accessories of types required to support fill materials during their application and in the position needed to produce cross-sectional shapes and depths required to achieve fire ratings.
 - 1. After installing fill materials and allowing them to fully cure, remove combustible forming materials and other accessories not forming permanent components of firestopping.
- D. Install fill materials by proven techniques to produce the following results:
 - 1. Fill voids and cavities formed by openings, forming materials, accessories and penetrating items to achieve required fire-resistance ratings.
 - 2. Apply materials so they contact and adhere to substrates formed by openings and penetrating items.
 - 3. For fill materials that will remain exposed after completing the Work, finish to produce smooth, uniform surfaces that are flush with adjoining finishes.

3.2 IDENTIFICATION

- A. Wall Identification: Permanently label walls containing penetration firestopping systems with the words "FIRE AND/OR SMOKE BARRIER PROTECT ALL OPENINGS," using lettering not less than 3 inches high and with minimum 0.375-inch strokes.
 - 1. Locate in accessible concealed floor, floor-ceiling, or attic space at 15 feet from end of wall and at intervals not exceeding 30 feet.
- B. Penetration Identification: Identify each penetration firestopping system with legible metal or plastic labels. Attach labels permanently to surfaces adjacent to and within 6 inches of penetration firestopping system edge so labels are visible to anyone seeking to remove penetrating items or firestopping systems. Use mechanical fasteners or self-adhering-type labels with adhesives capable of permanently bonding labels to surfaces on which labels are placed. Include the following information on labels:
 - 1. The words "Warning Penetration Firestopping Do Not Disturb. Notify Building Management of Any Damage."
 - 2. Contractor's name, address, and phone number.
 - 3. Designation of applicable testing and inspecting agency.
 - 4. Date of installation.
 - Manufacturer's name.
 - 6. Installer's name.

3.3 FIELD QUALITY CONTROL

- A. Owner reserves the right to engage a qualified testing agency to perform tests and inspections according to ASTM E 2174.
- B. Where deficiencies are found or penetration firestopping system is damaged or removed because of testing, repair or replace penetration firestopping system to comply with requirements.
- C. Proceed with enclosing penetration firestopping systems with other construction only after inspection reports are issued and installations comply with requirements.

END OF SECTION 07 84 13

SECTION 07 92 00 - JOINT SEALANTS

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - Nonstaining silicone joint sealants.
 - 2. Latex joint sealants.

1.2 ACTION SUBMITTALS

- A. Product Data: For each joint-sealant product.
- B. Samples: For each kind and color of joint sealant required.
- C. Joint-Sealant Schedule: Include the following information:
 - 1. Joint-sealant application, joint location, and designation.
 - 2. Joint-sealant manufacturer and product name.
 - 3. Joint-sealant color.

PART 2 - PRODUCTS

2.1 JOINT SEALANTS, GENERAL

A. Colors of Exposed Joint Sealants: As selected by Architect from manufacturer's full range.

2.2 NONSTAINING SILICONE JOINT SEALANTS

- A. Nonstaining Joint Sealants: No staining of substrates when tested according to ASTM C 1248.
- B. Silicone, Nonstaining, S, NS, 50, NT: Nonstaining, single-component, nonsag, plus 50 percent and minus 50 percent movement capability, nontraffic-use, neutral-curing silicone joint sealant; ASTM C 920, Type S, Grade NS, Class 50, Use NT.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Adfast.
 - b. GE Construction Sealants; Momentive Performance Materials Inc.
 - c. Pecora Corporation.
 - d. Sika Corporation; Joint Sealants.
 - e. The Dow Chemical Company.
 - f. Tremco Incorporated.

2.3 ACRYLIC LATEX JOINT SEALANTS

- A. Acrylic Latex: Acrylic latex or siliconized acrylic latex, ASTM C 834, Type OP, Grade NF.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Everkem Diversified Products, Inc.
 - b. Franklin International.
 - c. Pecora Corporation.
 - d. Sherwin-Williams Company (The).
 - e. Tremco Incorporated.

2.4 JOINT-SEALANT BACKING

- A. Cylindrical Sealant Backings: ASTM C 1330, Type C (closed-cell material with a surface skin), and of size and density to control sealant depth and otherwise contribute to producing optimum sealant performance.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Adfast.
 - b. Construction Foam Products; a division of Nomaco, Inc.
 - c. Master Builders Solutions.
- B. Bond-Breaker Tape: Polyethylene tape or other plastic tape recommended by sealant manufacturer.

2.5 MISCELLANEOUS MATERIALS

- A. Primer: Material recommended by joint-sealant manufacturer where required for adhesion of sealant to joint substrates indicated, as determined from preconstruction joint-sealant-substrate tests and field tests.
- B. Cleaners for Nonporous Surfaces: Chemical cleaners acceptable to manufacturers of sealants and sealant backing materials.
- C. Masking Tape: Nonstaining, nonabsorbent material compatible with joint sealants and surfaces adjacent to joints.

PART 3 - EXECUTION

3.1 PREPARATION

- A. Surface Cleaning of Joints: Clean out joints immediately before installing joint sealants to comply with joint-sealant manufacturer's written instructions and the following requirements:
 - 1. Remove laitance and form-release agents from concrete.
 - 2. Clean nonporous joint substrate surfaces with chemical cleaners or other means that do not stain, harm substrates, or leave residues capable of interfering with adhesion.
- B. Joint Priming: Prime joint substrates where recommended by joint-sealant manufacturer or as indicated by preconstruction joint-sealant-substrate tests or prior experience.
- C. Masking Tape: Use masking tape where required to prevent contact of sealant or primer with adjoining surfaces.

3.2 INSTALLATION OF JOINT SEALANTS

- A. General: Comply with ASTM C 1193 and joint-sealant manufacturer's written installation instructions for products and applications indicated, unless more stringent requirements apply.
- B. Install sealant backings of kind indicated to support sealants during application and at position required to produce cross-sectional shapes and depths of installed sealants relative to joint widths that allow optimum sealant movement capability.
- C. Install bond-breaker tape behind sealants where sealant backings are not used between sealants and backs of joints.

- D. Install sealants using proven techniques that comply with the following and at the same time backings are installed:
 - 1. Place sealants so they directly contact and fully wet joint substrates.
 - 2. Completely fill recesses in each joint configuration.
 - 3. Produce uniform, cross-sectional shapes and depths relative to joint widths that allow optimum sealant movement capability.
- E. Tooling of Nonsag Sealants: Immediately after sealant application and before skinning or curing begins, tool sealants to form smooth, uniform beads of configuration indicated. Use tooling agents that are approved in writing by sealant manufacturer and that do not discolor sealants or adjacent surfaces.
 - 1. Provide concave joint profile per Figure 8A in ASTM C 1193 unless otherwise indicated.

3.3 JOINT-SEALANT SCHEDULE

- A. Joint-Sealant Application: Exterior joints in vertical surfaces:
 - 1. Joint Sealant: Silicone, nonstaining, S, NS, 50, NT.
- B. Joint-Sealant Application: Interior joints in vertical surfaces not subject to significant movement.
 - Joint Sealant: Acrylic latex.

END OF SECTION 07 92 00

SECTION 08 80 00 - GLAZING

PART 1 - GENERAL

1.1 SECTION REQUIREMENTS

- A. Glaze indicated existing windows from which HVAC louvers have been removed.
- B. Submittals: Product Data.
- C. Safety Glass: Category II materials complying with testing requirements in 16 CFR 1201 and ANSI Z97.1.
- D. Glazing Publications: Comply with published recommendations of glass product manufacturers and organizations below, unless more stringent requirements are indicated.
 - 1. GANA Publications: GANA's "Glazing Manual."
 - 2. IGMA Publication for Insulating Glass: SIGMA TM-3000, "Glazing Guidelines for Sealed Insulating Glass Units."

PART 2 - PRODUCTS

2.1 FABRICATED GLASS PRODUCTS

- A. Sealed Insulating-Glass Units: Factory-assembled units complying with ASTM E 774 for Class CBA units, with two sheets of glass separated by a dehydrated space filled with air.
 - 1. Inboard Lite: Clear fully tempered glass
 - 2. Outboard Lite: Fully tempered glass, clear or tinted to match existing adjacent glass.
 - 3. Low-Emissivity Coating: Match existing adjacent glass. Apply to Second or Third surface.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Comply with combined recommendations of manufacturers of glass, sealants, gaskets, and other glazing materials, unless more stringent requirements are contained in GANA's "Glazing Manual."
- B. Remove nonpermanent labels, and clean surfaces immediately after installation.

END OF SECTION 08 80 00

SECTION 09 01 90.52 - MAINTENANCE REPAINTING

PART 1 - GENERAL

1.1 SUMMARY

- A. Section includes maintenance repainting as follows:
 - 1. Patching substrates.
 - 2. Surface preparation.
 - 3. Repainting.
- B. Substrates to be repainted include but are not limited to:
 - Concrete masonry units (CMU).
 - 2. Ceramic tile/glazed CMU/structural glazed tile.
 - 3. Steel.
 - 4. Wood.
 - 5. Gypsum board.
 - 6. Plaster.

1.2 DEFINITIONS

- A. Gloss Level 1: Not more than 5 units at 60 degrees and 10 units at 85 degrees, according to ASTM D 523.
- B. Gloss Level 2: Not more than 10 units at 60 degrees and 10 to 35 units at 85 degrees, according to ASTM D 523.
- C. Gloss Level 3: 10 to 25 units at 60 degrees and 10 to 35 units at 85 degrees, according to ASTM D 523.
- D. Gloss Level 4: 20 to 35 units at 60 degrees and not less than 35 units at 85 degrees, according to ASTM D 523.
- E. Gloss Level 5: 35 to 70 units at 60 degrees, according to ASTM D 523.
- F. Gloss Level 6: 70 to 85 units at 60 degrees, according to ASTM D 523.
- G. Gloss Level 7: More than 85 units at 60 degrees, according to ASTM D 523.

1.3 PREINSTALLATION MEETINGS

A. Preinstallation Conference: Conduct conference at Project site.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of product and in each color and gloss of topcoat.
- B. Samples: For each type of paint system and each pattern, color, and gloss.
 - 1. Submit Samples on rigid backing, 8 inches (200 mm) square.
 - 2. Label each coat of each sample.
 - 3. Label each Sample for location and application and application area.
- C. Product List: For each product indicated, include the following:

- 1. Cross-reference to paint system and locations of application areas. Use same designations indicated on Drawings and in schedules.
- 2. VOC content.

1.5 CLOSEOUT SUBMITTALS

A. Coating Maintenance Manual: Provide coating maintenance manual including area summary with finish schedule, area detail designating location where each product/color/finish was used, product data pages, material safety data sheets, care and cleaning instructions, touch-up procedures, and color samples of each color and finish used. Use same designations indicated on drawings / schedules.

1.6 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials, from the same product run, that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Paint: Provide 1 gal. of each coating type in each color applied.

1.7 QUALITY ASSURANCE

- A. Mockups: Prepare mockups of maintenance repainting processes for each type of coating system and substrate indicated and each color and finish required to demonstrate aesthetic effects and to set quality standards for materials and execution. Duplicate appearance of approved Sample submittals.
 - 1. Owner will select one surface to represent surfaces and conditions for application of each paint system specified in Part 3.
 - a. Vertical and Horizontal Surfaces: Provide samples of at least 100 sq. ft.
 - b. Other Items: Architect will designate items or areas required.
 - 2. Final approval of color selections will be based on mockups.
 - If preliminary color selections are not approved, apply additional mockups of additional colors selected by Architect at no added cost to Owner
 - 3. Approval of mockups does not constitute approval of deviations from the Contract Documents contained in mockups unless Architect specifically approves such deviations in writing.
 - 4. Subject to compliance with requirements, approved mockups may become part of the completed Work if undisturbed at time of Substantial Completion and accepted by Owner.

1.8 DELIVERY, STORAGE, AND HANDLING

- A. Delivery and Handling: Deliver products to Project site in an undamaged condition in manufacturer's original sealed containers, complete with labels and instructions for handling, storing, unpacking, protecting, and installing. Packaging shall bear the manufacturer's label with the following information:
 - Product name and type (description).
 - 2. Batch date.
 - 3. Color number.
 - 4. VOC content.
 - 5. Surface preparation requirements.
 - 6. Application instructions.
- B. Store materials not in use in tightly covered containers in well-ventilated areas with ambient temperatures continuously maintained at not less than 45 deg F.
 - 1. Maintain containers in clean condition, free of foreign materials and residue.
 - 2. Remove rags and waste from storage and work areas daily.

1.9 FIELD CONDITIONS

- A. Apply paints only when temperature of surfaces to be painted and ambient air temperatures are between 50 and 95 deg F.
- B. Do not apply paints when relative humidity exceeds 85 percent; at temperatures less than 5 deg F above the dew point; or to damp or wet surfaces.
- C. Lead Paint: It is not expected that lead paint will be encountered in the Work.
 - 1. If suspected lead paint is encountered, do not disturb; immediately notify Owner.
- D. Lead Paint: Lead paint may be present in buildings and structures to be painted. A report on the presence of lead paint is on file for review and use. Examine report to become aware of locations where lead paint is present.
 - 1. Do not disturb lead paint or items suspected of containing hazardous materials except under procedures specified.
 - 2. Where applicable, perform preparation for painting of substrates known to include lead paint in accordance with EPA Renovation, Repair and Painting Rule and additional requirements of authorities having jurisdiction.

PART 2 - PRODUCTS

2.1 PREPARATORY CLEANING MATERIALS

- A. Water: Potable.
- B. Hot Water: Water heated to a temperature of 140 to 160 deg F.
- C. Detergent Solution: Solution prepared by mixing 2 cups of tetrasodium pyrophosphate (TSPP), 1/2 cup of laundry detergent that contains no ammonia, 5 quarts of 5 percent sodium hypochlorite bleach, and 15 quarts of warm water for every 5 gal. of solution required.
- D. Mildewcide: Commercial proprietary mildewcide or a job-mixed solution prepared by mixing 1/3 cup of household detergent that contains no ammonia, 1 quart of 5 percent sodium hypochlorite bleach, and 3 quarts of warm water.
- E. Abrasives for Ferrous Metal Cleaning: Aluminum oxide paper, emery paper, fine steel wool, steel scrapers, and steel-wire brushes of various sizes.

2.2 PAINT, GENERAL

- A. Material Compatibility:
 - 1. Provide materials for use within each paint system that are compatible with one another and substrates indicated, under conditions of service and application as demonstrated by manufacturer, based on testing and field experience.
 - 2. For each coat in a paint system, provide products recommended in writing by manufacturers of topcoat for use in paint system and on substrate indicated.
- B. VOC Content: Comply with current State of Illinois Regulations regarding VOC (Volatile Organic Compounds).
- C. Colors: Specified on Drawings.

2.3 SOURCE QUALITY CONTROL

- A. Testing of Paint Materials: Owner reserves the right to invoke the following procedure:
 - 1. Owner will engage the services of a qualified testing agency to sample paint materials. Contractor will be notified in advance and may be present when samples are taken. If paint materials have already been delivered to Project site, samples may be taken at Project site. Samples will be identified, sealed, and certified by testing agency.
 - 2. Testing agency will perform tests for compliance with product requirements.
 - 3. Owner may direct Contractor to stop applying coatings if test results show materials being used do not comply with product requirements. Contractor shall remove noncomplying paint materials from Project site, pay for testing, and repaint surfaces painted with rejected materials. Contractor will be required to remove rejected materials from previously painted surfaces if, on repainting with complying materials, the two paints are incompatible. Contractor responsible for substrate damage identified, resulting from removal of rejected materials based on compliance testing.

2.4 PAINT MATERIALS, GENERAL

- A. MPI Standards: Provide products that comply with MPI standards indicated and that are listed in its "MPI Approved Products List."
- B. Transition Coat: Paint manufacturer's recommended coating for use where a residual existing coating is incompatible with the paint system.

2.5 PAINT MATERIAL MANUFACTURERS

- A. Basis-of-Design Product: Subject to compliance with requirements, provide products indicated in construction documents or Owner-approved equal from one of the following:
 - 1. Sherwin-Williams Company.
 - 2. Benjamin Moore & Co.
 - 3. Glidden Professional, Division of PPG Architectural Finishes, Inc.
 - 4. PPG Architectural Finishes, Inc.
 - Pratt & Lambert.

2.6 PATCHING MATERIALS

- A. Wood-Patching Compound: Two-part, epoxy-resin, wood-patching compound; knife-grade formulation as recommended in writing by manufacturer for type of wood repair indicated, tooling time required for the detail of work, and site conditions. Compound shall be designed for filling voids in damaged wood materials that have deteriorated from wear and tear. Compound shall be capable of filling deep holes and spreading to feather edge.
- B. Metal-Patching Compound: Two-part, polyester-resin, metal-patching compound; knife-grade formulation as recommended in writing by manufacturer for type of metal repair indicated, tooling time required for the detail of work, and site conditions. Compound shall be produced for filling metal that has deteriorated from corrosion. Filler shall be capable of filling deep holes and spreading to feather edge.
- C. Cementitious Patching Compounds: Cementitious patching compounds and repair materials specifically manufactured for filling cementitious substrates and for sanding or tooling prior to repainting; formulation as recommended in writing by manufacturer for type of cementitious substrate indicated, exposure to weather and traffic, the detail of work, and site conditions.
- D. Gypsum-Plaster Patching Compound: Finish coat plaster and bonding compound according to ASTM C 842 and manufacturer's written instructions.

PART 3 - EXECUTION

3.1 MAINTENANCE REPAINTING, GENERAL

- A. Execution of the Work: In repainting surfaces, disturb them as minimally as possible and as follows:
 - 1. Remove failed coatings and corrosion and repaint.
 - 2. Verify that substrate surface conditions are suitable for repainting.
- B. Mechanical Abrasion: Where mechanical abrasion is needed for the work, use gentle methods, such as scraping and lightly hand sanding, that will not abrade softer substrates, reducing clarity of detail.
- C. Heat Processes: Do not use torches, heat guns, or heat plates.

3.2 EXAMINATION

- A. Examine substrates and conditions for compliance with requirements for maximum moisture content and other conditions affecting performance of painting work. Comply with paint manufacturer's written instructions for inspection.
- B. Maximum Moisture Content of Substrates: Do not begin application of coatings unless moisture content of exposed surface is below the maximum value recommended in writing by paint manufacturer and not greater than the following maximum values when measured with an electronic moisture meter appropriate to the substrate material:
 - 1. Concrete: 12 percent.
 - 2. Gypsum Board: 12 percent.
 - 3. Gypsum Plaster: 12 percent.
 - 4. Masonry (Clay and CMU): 12 percent.
 - 5. Portland Cement Plaster: 12 percent.
 - 6. Wood: 15 percent.
- C. Gypsum Board Substrates: Verify that finishing compound is sanded smooth.
- D. Plaster Substrates: Verify that plaster is fully cured.
- E. Existing finished surfaces: Verify existing finish is adequate or made ready to receive new finish
- F. Proceed with coating application only after unsatisfactory conditions have been corrected; application of coating indicates acceptance of surfaces and conditions.
- G. Alkalinity: Do not begin application of coatings unless surface alkalinity is within range recommended in writing by paint manufacturer. Conduct alkali testing with litmus paper on exposed plaster, cementitious, and masonry surfaces.

3.3 PREPARATORY CLEANING

- A. General: Use the gentlest, appropriate method necessary to clean surfaces in preparation for painting. Clean all surfaces, corners, contours, and interstices.
- B. Detergent Cleaning: Wash surfaces by hand using clean rags, sponges, and bristle brushes. Scrub surface with detergent solution and bristle brush until soil is thoroughly dislodged and can be removed by rinsing. Use small brushes to remove soil from joints and crevices. Dip brush in

solution often to ensure that adequate fresh detergent is used and that surface remains wet. Rinse with water applied by clean rags or sponges.

- C. Solvent Cleaning: Use solvent cleaning to remove oil, grease, smoke, tar, and asphalt from painted or unpainted surfaces before other preparation work. Wipe surfaces with solvent using clean rags and sponges. If necessary, spot-solvent cleaning may be employed just prior to commencement of paint application, provided enough time is allowed for complete evaporation. Use clean solvent and clean rags for the final wash to ensure that all foreign materials have been removed. Do not use solvents, including primer thinner and turpentine, that leave residue.
- D. Mildew: Clean off existing mildew, algae, moss, plant material, loose paint, grease, dirt, and other debris by scrubbing with bristle brush or sponge and detergent solution. Scrub mildewed areas with mildewcide. Rinse with water applied by clean rags or sponges.

E. Mechanical Rust Removal:

- 1. Remove rust with specified abrasives for ferrous-metal cleaning. Clean to bright metal.
- 2. Wipe off residue with mineral spirits and either steel wool or soft rags.
- 3. Dry immediately with clean, soft cloths. Follow direction of grain in metal.
- 4. Prime immediately to prevent rust. Do not touch cleaned metal surface until primed.

3.4 SUBSTRATE REPAIR

A. General: Repair substrate surface defects that are inconsistent with the surface appearance of adjacent materials and finishes.

B. Wood Substrate:

- Repair wood defects including dents and gouges more than 1/8 inch in size and all holes and cracks by filling with wood-patching compound and sanding smooth. Reset or remove protruding fasteners.
- 2. Where existing paint is allowed to remain, sand irregular buildup of paint, runs, and sags to achieve a uniformly smooth surface.

C. Cementitious Material Substrate:

- 1. General: Repair defects including dents and chips more than 1/4 inch in size and all holes and cracks by filling with cementitious patching compound and sanding smooth. Remove protruding fasteners.
- 2. New and Bare Plaster: Neutralize surface of plaster with mild acid solution as recommended in writing by paint manufacturer. In lieu of acid neutralization, follow manufacturer's written instruction for primer or transition coat over alkaline plaster surfaces.
- 3. Concrete, Cement Plaster, and Other Cementitious Products: Remove efflorescence, chalk, dust, dirt, grease, oils, and release agents. If surfaces are too alkaline to paint, correct this condition before painting.

D. Gypsum-Plaster and Gypsum-Board Substrates:

- Repair defects including dents and chips more than 1/8 inch in size and all holes and cracks by filling with gypsum-plaster patching compound and sanding smooth. Remove protruding fasteners.
- 2. Rout out surface cracks to remove loose, unsound material; fill with patching compound and sand smooth.

E. Metal Substrates:

 Preparation: Treat repair locations by wire-brushing and solvent cleaning. Use mechanical rust removal method to clean off rust.

- 2. Defects in Metal Surfaces: Repair non-load-bearing defects in existing metal surfaces, including dents and gouges more than 1/16 inch deep or 1/2 inch across and all holes and cracks by filling with metal-patching compound and sanding smooth. Remove burrs and protruding fasteners.
- 3. Priming: Prime iron and steel surfaces immediately after repair to prevent flash rusting. Stripe paint corners, crevices, bolts, welds, and sharp edges. Apply two coats to surfaces that are inaccessible after completion of the Work.

3.5 PAINT APPLICATION, GENERAL

- A. Prepare surfaces to be painted according to the Surface-Preparation Schedule and with manufacturer's written instructions for each substrate condition.
- B. Apply a transition coat over incompatible existing coatings.
- C. Metal Substrates: Stripe paint corners, crevices, bolts, welds, and sharp edges before applying full coat. Apply two coats to surfaces that are inaccessible after completion of the Work. Tint stripe coat different than the main coating and apply with brush.
- D. Blending Painted Surfaces: When painting new substrates patched into existing surfaces or touching up missing or damaged finishes, apply coating system specified for the specific substrate. Apply final finish coat over entire surface from edge to edge and corner to corner.

3.6 CLEANING AND PROTECTION

- A. At end of each workday, remove rubbish, empty cans, rags, and other discarded materials from Project site.
- B. Protect work of other trades against damage from paint application. Correct damage to work of other trades by cleaning, repairing, replacing, and refinishing, as approved by Architect, and leave in an undamaged condition.
- C. At completion of construction activities of other trades, touch up and restore damaged or defaced painted surfaces.

3.7 SURFACE-PREPARATION SCHEDULE

- A. General: Before painting, prepare surfaces for painting according to applicable requirements specified in this schedule.
 - 1. Examine surfaces to evaluate each surface condition according to paragraphs below.
 - 2. Where existing degree of soiling prevents examination, preclean surface and allow it to dry before making an evaluation.
 - 3. Repair substrate defects according to "Substrate Repair" Article.
- B. Surface Preparation for MPI DSD 0 Degree of Surface Degradation:
 - 1. Surface Condition: Existing paint film in good condition and tightly adhered.
 - 2. Paint Removal: Not required.
 - 3. Preparation for Painting: Wash surface by detergent cleaning; use solvent cleaning where needed. Roughen or degloss cleaned surfaces to ensure paint adhesion according to paint manufacturer's written instructions.
- C. Surface Preparation for MPI DSD 1 Degree of Surface Degradation:
 - 1. Surface Condition: Paint film cracked or broken but adhered.
 - 2. Paint Removal: Scrape by hand-tool cleaning methods to remove loose paint until only tightly adhered paint remains.

- 3. Preparation for Painting: Wash surface by detergent cleaning; use other cleaning methods for small areas of bare substrate if required. Roughen, degloss, and sand the cleaned surfaces to ensure paint adhesion and a smooth finish according to paint manufacturer's written instructions.
- D. Surface Preparation for MPI DSD 2 Degree of Surface Degradation:
 - 1. Surface Condition: Paint film loose, flaking, or peeling.
 - 2. Paint Removal: Remove loose, flaking, or peeling paint film by hand-tool methods.
 - 3. Preparation for Painting: Wash surface by detergent cleaning; use solvent cleaning where needed. Use other cleaning methods for small areas of bare substrate if required. Sand surfaces to smooth remaining paint film edges. Prepare bare cleaned surface to be painted according to paint manufacturer's written instructions for substrate construction materials.
- E. Surface Preparation for MPI DSD 3 Degree of Surface Degradation:
 - Surface Condition: Paint film severely deteriorated.
 - 2. Paint Removal: Completely remove paint film by hand-tool methods. Remove rust.
 - 3. Preparation for Painting: Prepare bare cleaned surface according to paint manufacturer's written instructions for substrate construction materials.
- F. Surface Preparation for MPI DSD 4 Degree of Surface Degradation:
 - Surface Condition: Missing material, small holes and openings, and deteriorated or corroded substrate.
 - 2. Substrate Preparation: Repair, replace, and treat substrate according to "Substrate Repair" Article.
 - 3. Preparation for Painting: Sand substrate surfaces to smooth remaining paint film edges and prepare according to paint manufacturer's written instructions for substrate construction materials. Remove rust.
 - 4. Painting: Paint as required for MPI DSD 2 degree of surface degradation.

3.8 INTERIOR MAINTENANCE REPAINTING SCHEDULE

- A. CMU Substrates:
 - 1. Water-Based Light Industrial Coating System:
 - a. Block filler: Latex, interior/exterior: S-W PrepRite Block Filler, B25W25, at 100 to 200 sq. ft. per gal (2.4 to 4.9 sq. in per 1). (Use if unpainted CMU.)
 - b. Primer: S-W Protective & Marine Coatings, DTM Acrylic Coating (not required above 6'-0" above finished floor).
 - c. Topcoat: Light industrial coating, interior, water based, eggshell: S-W Pro Industrial Pre-Catalyzed Water-based Epoxy, K45-151 Series, at 4.0 mils wet, 1.5 mils dry, per coat.
- B. Ceramic Tile. Glazed CMU:
 - Two Step System:
 - a. Step One: Pre-primer / Tack Coat S-W 5531.
 - b. Step Two: S-W Protective & Marine Coatings, Water-based Tile-clad Epoxy finish (Part A & Part B).
- C. Metal Substrates (Aluminum, Steel, Galvanized Steel, Hollow Metal Frames and Doors):
 - Latex System:
 - a. Prime Coat: Primer, rust-inhibitive, water-based alkyd: S-W Pro Industrial Pro- Cryl Universal Primer, B66-310 Series, at 5.0 to 10 mils wet, 2.0 to 4.0 mils dry.
 - b. Intermediate Coat: Water-based acrylic, interior, matching topcoat.
 - c. Topcoat: Water-based acrylic, semi-gloss: S-W Pro Industrial Acrylic Semi-Gloss Coating, B66-650 Series, at 2.5 to 4.0 mils dry, per coat.

- d. Topcoat: Water-based acrylic, gloss: S-W Pro Industrial Acrylic Gloss Coating, B66-660 Series, at 2.5 to 4.0 mils dry, per coat.
- 2. Water-Based Light Industrial Coating System:
 - a. Prime Coat: Primer, water based: S-W Pro Industrial Pro-Cry1 Universal Primer, B66-310 Series, at 5.0 to 10.0 mils wet, 2.0 to 4.0 mils dry.
 - b. Intermediate Coat: Light industrial coating, interior, water based, matching topcoat.
 - c. Topcoat: Light industrial coating, interior, water based, eggshell: S-W Pro Industrial Pre-Catalyzed Water Based Epoxy, K45-151 Series, at 4.0 mils wet, 1.5 mils dry, per coat.
- 3. Wood Substrates: Including exposed wood items not indicated to receive shop-applied finish:
 - a. Latex System:
 - 1) Prime Coat: Primer sealer, latex, interior: S-W PrepRite ProBlock Primer Sealer, B51-620 Series, at 4.0 mils wet, 1.4 mils dry.
 - 2) Intermediate Coat: Latex, interior, matching topcoat.
 - 3) Topcoat: Latex, interior, eggshell: S-W ProMar 200 Zero VOC Latex Eg-She1, B20-2600 Series, at 4.0 mils wet, 1.7 mils diy, per coat.
 - 4) Topcoat: Latex, interior, semi-gloss: S-W ProMar 200 Zero VOC Latex Semi-Gloss, B31-2600 Series, at 4.0 mils wet, 1.6 mils dry, per coat.
 - 5) Topcoat: Latex, interior, gloss: S-W ProMar 200 Latex Gloss, B11-2200 Series, at 4.0 mils wet, 1.5 mils dry, per coat.
 - b. Water-Based Light Industrial Coating System:
 - 1) Prime Coat: Primer sealer, latex, interior: S-W PrepRite ProBlock Primer Sealer, B51-620 Series, at 4.0 mils wet, 1.4 mils dry.
 - 2) Intermediate Coat: Light industrial coating, interior, water based, matching topcoat.
 - 3) Topcoat: Light industrial coating, interior, water based, eggshell: S-W Pro Industrial Pre-Catalyzed Water Based Epoxy, K45-151 Series, at 4.0 mils wet, 1.5 mils dry, per coat.
- 4. Gypsum Board, Plaster, Vinyl, and Spray-Texture Ceiling Substrates:
 - a. Water-Based Light Industrial Coating System:
 - 1) Intermediate Coat: Light industrial coating, interior, water based, matching topcoat.
 - Topcoat: Light industrial coating, interior, water based, eggshell: S-W Pro Industrial Pre-Catalyzed Waterbased Epoxy, K45-151 Series, at 4.0 mils wet, 1.5 mils dry, per coat.

END OF SECTION 09 01 90.52

SECTION 09 65 16 - RESILIENT SHEET FLOORING

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - Resilient sheet flooring.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Samples: For each exposed product and for each color, texture, and pattern specified.

1.3 CLOSEOUT SUBMITTALS

A. Maintenance data.

1.4 QUALITY ASSURANCE

- A. Installer Qualifications: An entity that employs installers and supervisors who are competent in techniques required by manufacturer for resilient sheet flooring installation and seaming method indicated.
 - 1. Engage an installer who employs workers for this Project who are trained or certified by resilient sheet flooring manufacturer for installation techniques required.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Fire-Test-Response Characteristics: For resilient sheet flooring, as determined by testing identical products according to ASTM E 648 or NFPA 253 by a qualified testing agency.
 - 1. Critical Radiant Flux Classification: Class I, not less than 0.45 W/sq. cm.

2.2 RESILIENT SHEET FLOORING

A. Resilient sheet flooring products are specified on Drawings.

2.3 INSTALLATION MATERIALS

- A. Trowelable Leveling and Patching Compounds: Latex-modified, portland-cement-based or blended hydraulic-cement-based formulation provided or approved by resilient sheet flooring manufacturer for applications indicated.
- B. Adhesives: Water-resistant type recommended by flooring and adhesive manufacturers to suit resilient sheet flooring and substrate conditions indicated.
- C. Seamless-Installation Accessories:
 - 1. Heat-Welding Bead: Manufacturer's solid-strand product for heat welding seams.
- D. Floor Polish: Provide protective, liquid floor-polish products recommended by resilient sheet flooring manufacturer.

PART 3 - EXECUTION

3.1 PREPARATION

- A. Prepare substrates according to resilient sheet flooring manufacturer's written instructions to ensure adhesion of resilient sheet flooring.
- B. Concrete Substrates: Prepare according to ASTM F 710.
 - 1. Verify that substrates are dry and free of curing compounds, sealers, and hardeners.
 - 2. Remove substrate coatings and other substances that are incompatible with adhesives and that contain soap, wax, oil, or silicone, using mechanical methods recommended by resilient sheet flooring manufacturer. Do not use solvents.
 - 3. Alkalinity and Adhesion Testing: Perform tests recommended by resilient sheet flooring manufacturer. Proceed with installation only after substrate alkalinity falls within range on pH scale recommended by manufacturer in writing, but not less than 5 or more than 9 pH.
 - 4. Moisture Testing: Perform tests so that each test area does not exceed 1000 sq. ft., and perform no fewer than three tests in each installation area and with test areas evenly spaced in installation areas.
 - a. Anhydrous Calcium Chloride Test: ASTM F 1869. Proceed with installation only after substrates have maximum moisture-vapor-emission rate of 3 lb of water/1000 sq. ft. in 24 hours.
 - b. Relative Humidity Test: Using in-situ probes, ASTM F 2170. Proceed with installation only after substrates have a maximum 75 percent relative humidity level measurement.
- C. Fill cracks, holes, and depressions in substrates with trowelable leveling and patching compound; remove bumps and ridges to produce a uniform and smooth substrate.
- D. Do not install resilient sheet flooring until materials are the same temperature as space where they are to be installed.
 - 1. At least 48 hours in advance of installation, move flooring and installation materials into spaces where they will be installed.
- E. Immediately before installation, sweep and vacuum clean substrates to be covered by resilient sheet flooring.

3.2 RESILIENT SHEET FLOORING INSTALLATION

- A. Comply with manufacturer's written instructions for installing resilient sheet flooring.
- B. Unroll resilient sheet flooring and allow it to stabilize before cutting and fitting.
- C. Lay out resilient sheet flooring as follows:
 - 1. Maintain uniformity of flooring direction.
 - 2. Minimize number of seams; place seams in inconspicuous and low-traffic areas, at least 6 inches away from parallel joints in flooring substrates.
 - 3. Match edges of flooring for color shading at seams.
 - Avoid cross seams.
- D. Scribe and cut resilient sheet flooring to butt neatly and tightly to vertical surfaces and permanent fixtures including built-in furniture, cabinets, pipes, outlets, and door frames.
- E. Extend resilient sheet flooring into toe spaces, door reveals, closets, and similar openings.

- F. Maintain reference markers, holes, and openings that are in place or marked for future cutting by repeating on resilient sheet flooring as marked on substrates. Use chalk or other nonpermanent marking device.
- G. Install resilient sheet flooring on covers for telephone and electrical ducts and similar items in installation areas. Maintain overall continuity of color and pattern between pieces of flooring installed on covers and adjoining flooring. Tightly adhere flooring edges to substrates that abut covers and to cover perimeters.
- H. Adhere resilient sheet flooring to substrates using a full spread of adhesive applied to substrate to produce a completed installation without open cracks, voids, raising and puckering at joints, telegraphing of adhesive spreader marks, and other surface imperfections.
- I. Seamless Installation:
 - Heat-Welded Seams: Comply with ASTM F 1516. Rout joints and heat weld with welding bead to fuse sections permanently into a seamless flooring installation. Prepare, weld, and finish seams to produce surfaces flush with adjoining flooring surfaces.
- J. Floor Polish: Remove soil, adhesive, and blemishes from flooring surfaces before applying liquid floor polish.
 - Apply two coat(s).

END OF SECTION 09 65 16

SECTION 09 65 19 - RESILIENT TILE FLOORING

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - Resilient floor tile.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Samples: For each exposed product and for each color and pattern specified.

1.3 CLOSEOUT SUBMITTALS

A. Maintenance data.

1.4 QUALITY ASSURANCE

A. Installer Qualifications: An entity that employs installers and supervisors who are competent in techniques required by manufacturer for floor tile installation.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Fire-Test-Response Characteristics: For resilient floor tile, as determined by testing identical products according to ASTM E 648 or NFPA 253 by a qualified testing agency.
 - 1. Critical Radiant Flux Classification: Class I, not less than 0.45 W/sq. cm.

2.2 RESILIENT FLOOR TILE

A. Products, Colors, and Patterns: Specified on Drawings.

2.3 INSTALLATION MATERIALS

- A. Trowelable Leveling and Patching Compounds: Latex-modified, portland-cement-based or blended hydraulic-cement-based formulation provided or approved by floor tile manufacturer for applications indicated.
- B. Adhesives: Water-resistant type recommended by floor tile and adhesive manufacturers to suit floor tile and substrate conditions indicated.
- C. Floor Polish: Provide protective, liquid floor-polish products recommended by floor tile manufacturer.

PART 3 - EXECUTION

3.1 PREPARATION

A. Prepare substrates according to floor tile manufacturer's written instructions to ensure adhesion of resilient products.

- B. Concrete Substrates: Prepare according to ASTM F 710.
 - 1. Verify that substrates are dry and free of curing compounds, sealers, and hardeners.
 - 2. Remove substrate coatings and other substances that are incompatible with adhesives and that contain soap, wax, oil, or silicone, using mechanical methods recommended by floor tile manufacturer. Do not use solvents.
 - 3. Alkalinity and Adhesion Testing: Perform tests recommended by floor tile manufacturer. Proceed with installation only after substrate alkalinity falls within range on pH scale recommended by manufacturer in writing, but not less than 5 or more than 9 pH.
 - 4. Moisture Testing: Perform tests so that each test area does not exceed 1000 sq. ft., and perform no fewer than three tests in each installation area and with test areas evenly spaced in installation areas.
 - a. Anhydrous Calcium Chloride Test: ASTM F 1869. Proceed with installation only after substrates have maximum moisture-vapor-emission rate of 3 lb of water/1000 sq. ft. in 24 hours.
 - b. Relative Humidity Test: Using in-situ probes, ASTM F 2170. Proceed with installation only after substrates have a maximum 75 percent relative humidity level measurement.
- C. Fill cracks, holes, and depressions in substrates with trowelable leveling and patching compound; remove bumps and ridges to produce a uniform and smooth substrate.
- D. Do not install floor tiles until materials are the same temperature as space where they are to be installed.
 - 1. At least 48 hours in advance of installation, move resilient floor tile and installation materials into spaces where they will be installed.
- E. Immediately before installation, sweep and vacuum clean substrates to be covered by resilient floor tile.

3.2 FLOOR TILE INSTALLATION

- A. Comply with manufacturer's written instructions for installing floor tile.
- B. Lay out floor tiles from center marks established with principal walls, discounting minor offsets, so tiles at opposite edges of room are of equal width. Adjust as necessary to avoid using cut widths that equal less than one-half tile at perimeter.
- C. Match floor tiles for color and pattern by selecting tiles from cartons in the same sequence as manufactured and packaged, if so numbered. Discard broken, cracked, chipped, or deformed tiles.
- D. Scribe, cut, and fit floor tiles to butt neatly and tightly to vertical surfaces and permanent fixtures including built-in furniture, cabinets, pipes, outlets, and door frames.
- E. Extend floor tiles into toe spaces, door reveals, closets, and similar openings. Extend floor tiles to center of door openings.
- F. Maintain reference markers, holes, and openings that are in place or marked for future cutting by repeating on floor tiles as marked on substrates. Use chalk or other nonpermanent marking device.
- G. Install floor tiles on covers for telephone and electrical ducts, building expansion-joint covers, and similar items in installation areas. Maintain overall continuity of color and pattern between pieces of tile installed on covers and adjoining tiles. Tightly adhere tile edges to substrates that abut covers and to cover perimeters.

- H. Adhere floor tiles to substrates using a full spread of adhesive applied to substrate to produce a completed installation without open cracks, voids, raising and puckering at joints, telegraphing of adhesive spreader marks, and other surface imperfections.
- I. Floor Polish: Remove soil, adhesive, and blemishes from floor tile surfaces before applying liquid floor polish.
 - 1. Apply two coat(s).

END OF SECTION 09 65 19

SECTION 09 68 13 - TILE CARPETING

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes modular carpet tile.

1.2 PREINSTALLATION MEETINGS

A. Preinstallation Conference: Conduct conference at Project site.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Shop Drawings: For carpet tile installation, plans showing the following:
 - 1. Columns, doorways, enclosing walls or partitions, built-in cabinets, and locations where cutouts are required in carpet tiles.
 - 2. Carpet tile type, color, and dye lot.
 - 3. Type of subfloor.
 - 4. Type of installation.
 - 5. Pattern of installation.
 - 6. Pattern type, location, and direction.
 - 7. Pile direction.
 - 8. Type, color, and location of insets and borders.
 - 9. Type, color, and location of edge, transition, and other accessory strips.
 - 10. Transition details to other flooring materials.
- C. Samples: For each exposed product and for each color and texture required.

1.4 INFORMATIONAL SUBMITTALS

- A. Product test reports.
- B. Sample warranty.

1.5 CLOSEOUT SUBMITTALS

A. Maintenance data.

1.6 QUALITY ASSURANCE

A. Installer Qualifications: Certified by the International Certified Floorcovering Installers Association at the Commercial II certification level.

1.7 WARRANTY

- A. Special Warranty for Carpet Tiles: Manufacturer agrees to repair or replace components of carpet tile installation that fail in materials or workmanship within specified warranty period.
 - 1. Warranty Period: 10 years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 CARPET TILE

A. Carpet tile products are specified on Drawings.

2.2 INSTALLATION ACCESSORIES

- A. Trowelable Leveling and Patching Compounds: Latex-modified, hydraulic-cement-based formulation provided or recommended by carpet tile manufacturer.
- B. Adhesives: Water-resistant, mildew-resistant, nonstaining, pressure-sensitive type to suit products and subfloor conditions indicated, that comply with flammability requirements for installed carpet tile, and are recommended by carpet tile manufacturer for releasable installation.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Concrete Slabs:

- Moisture Testing: Perform tests so that each test area does not exceed 1000 sq. ft., and perform no fewer than three tests in each installation area and with test areas evenly spaced in installation areas.
 - a. Anhydrous Calcium Chloride Test: ASTM F 1869. Proceed with installation only after substrates have maximum moisture-vapor-emission rate of 3 lb of water/1000 sq. ft. in 24 hours.
 - b. Relative Humidity Test: Using in situ probes, ASTM F 2170. Proceed with installation only after substrates have a maximum 75 percent relative humidity level measurement.
 - c. Perform additional moisture tests recommended in writing by adhesive and carpet tile manufacturers. Proceed with installation only after substrates pass testing.
- B. Wood Subfloors: Verify that underlayment surface is free of irregularities and substances that may interfere with adhesive bond or show through surface.
- C. Metal Subfloors: Verify that underlayment surface is free of irregularities and substances that may interfere with adhesive bond or show through surface.
- D. Painted Subfloors: Perform bond test recommended in writing by adhesive manufacturer.

3.2 PREPARATION

- A. General: Comply with CRI's "CRI Carpet Installation Standards" and with carpet tile manufacturer's written installation instructions for preparing substrates indicated to receive carpet tile.
- B. Use trowelable leveling and patching compounds, according to manufacturer's written instructions, to fill cracks, holes, depressions, and protrusions in substrates. Fill or level cracks, holes and depressions 1/8 inch wide or wider, and protrusions more than 1/32 inch unless more stringent requirements are required by manufacturer's written instructions.
- C. Concrete Substrates: Remove coatings, including curing compounds, and other substances that are incompatible with adhesives and that contain soap, wax, oil, or silicone, without using

solvents. Use mechanical methods recommended in writing by adhesive and carpet tile manufacturers.

- D. Metal Substrates: Clean grease, oil, soil and rust, and prime if recommended in writing by adhesive manufacturer. Rough sand painted metal surfaces and remove loose paint. Sand aluminum surfaces, to remove metal oxides, immediately before applying adhesive.
- E. Broom and vacuum clean substrates to be covered immediately before installing carpet tile.

3.3 INSTALLATION

- A. General: Comply with CRI's "CRI Carpet Installation Standard," Section 18, "Modular Carpet" and with carpet tile manufacturer's written installation instructions.
- B. Installation Method: As recommended in writing by carpet tile manufacturer.
- C. Maintain dye-lot integrity. Do not mix dye lots in same area.
- D. Maintain pile-direction patterns recommended in writing by carpet tile manufacturer.
- E. Cut and fit carpet tile to butt tightly to vertical surfaces, permanent fixtures, and built-in furniture including cabinets, pipes, outlets, edgings, thresholds, and nosings. Bind or seal cut edges as recommended by carpet tile manufacturer.
- F. Extend carpet tile into toe spaces, door reveals, closets, open-bottomed obstructions, removable flanges, alcoves, and similar openings.
- G. Maintain reference markers, holes, and openings that are in place or marked for future cutting by repeating on carpet tile as marked on subfloor. Use nonpermanent, nonstaining marking device.
- H. Install pattern parallel to walls and borders.
- I. Protect carpet tile against damage from construction operations and placement of equipment and fixtures during the remainder of construction period. Use protection methods indicated or recommended in writing by carpet tile manufacturer.

END OF SECTION 09 68 13

SECTION 09 68 16 - SHEET CARPETING

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - Sheet carpet.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Shop Drawings: For carpet installation, showing the following:
 - 1. Columns, doorways, enclosing walls or partitions, built-in cabinets, and locations where cutouts are required in carpet.
 - 2. Carpet type, color, and dye lot.
 - 3. Locations where dye lot changes occur.
 - 4. Seam locations, types, and methods.
 - 5. Type of subfloor.
 - 6. Type of installation.
 - 7. Pattern type, repeat size, location, direction, and starting point.
 - 8. Pile direction.
 - 9. Types, colors, and locations of insets and borders.
 - 10. Types, colors, and locations of edge, transition, and other accessory strips.
 - 11. Transition details to other flooring materials.
 - 12. Type of carpet cushion.
- C. Samples: For each exposed product and for each color and texture required.

1.3 INFORMATIONAL SUBMITTALS

- A. Product test reports.
- B. Sample warranties.

1.4 CLOSEOUT SUBMITTALS

A. Maintenance data.

1.5 QUALITY ASSURANCE

A. Installer Qualifications: Certified by the International Certified Floorcovering Installers Association at the Commercial II certification level.

1.6 WARRANTY

- A. Special Warranty for Carpet: Manufacturer agrees to repair or replace components of carpet installation that fail in materials or workmanship within specified warranty period.
 - 1. Warranty Period: 10 years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 CARPET

A. Carpet products are specified on Drawings.

2.2 INSTALLATION ACCESSORIES

- A. Trowelable Leveling and Patching Compounds: Latex-modified, hydraulic-cement-based formulation provided or recommended by carpet manufacturer.
- B. Adhesives: Water-resistant, mildew-resistant, nonstaining type to suit products and subfloor conditions indicated, that complies with flammability requirements for installed carpet and is recommended or provided by carpet manufacturer.
- C. Seam Adhesive: Hot-melt adhesive tape or similar product recommended by carpet manufacturer for sealing and taping seams and butting cut edges at backing to form secure seams and to prevent pile loss at seams.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Concrete Slabs:

- Moisture Testing: Perform tests so that each test area does not exceed 1000 sq. ft., and perform no fewer than three tests in each installation area and with test areas evenly spaced in installation areas.
 - a. Anhydrous Calcium Chloride Test: ASTM F 1869. Proceed with installation only after substrates have maximum moisture-vapor-emission rate of 3 lb of water/1000 sq. ft. in 24 hours.
 - b. Relative Humidity Test: Using in situ probes, ASTM F 2170. Proceed with installation only after substrates have a maximum 75 percent relative humidity level measurement.
 - c. Perform additional moisture tests recommended in writing by adhesive and carpet manufacturers. Proceed with installation only after substrates pass testing.
- B. Wood Subfloors: Verify that underlayment surface is free of irregularities and substances that may interfere with adhesive bond or show through surface.

3.2 PREPARATION

- A. General: Comply with CRI's "CRI Carpet Installation Standard" and with carpet manufacturer's written installation instructions for preparing substrates.
- B. Use trowelable leveling and patching compounds, according to manufacturer's written instructions, to fill cracks, holes, depressions, and protrusions in substrates. Fill or level cracks, holes and depressions 1/8 inch wide or wider, and protrusions more than 1/32 inch, unless more stringent requirements are required by manufacturer's written instructions.
- C. Concrete Substrates: Remove coatings, including curing compounds, and other substances that are incompatible with adhesives and that contain soap, wax, oil, or silicone, without using solvents. Use mechanical methods recommended in writing by adhesive and carpet manufacturers.
- D. Broom and vacuum clean substrates to be covered immediately before installing carpet.

3.3 CARPET INSTALLATION

- A. Comply with CRI's "CRI Carpet Installation Standard" and carpet manufacturer's written installation instructions for the following:
 - 1. Direct-glue-down installation.
- B. Comply with carpet manufacturer's written instructions and Shop Drawings for seam locations and direction of carpet; maintain uniformity of carpet direction and lay of pile. At doorways, center seams under the door in closed position.
- C. Cut and fit carpet to butt tightly to vertical surfaces, permanent fixtures, and built-in furniture including cabinets, pipes, outlets, edgings, thresholds, and nosings. Bind or seal cut edges as recommended by carpet manufacturer.
- D. Extend carpet into toe spaces, door reveals, closets, open-bottomed obstructions, removable flanges, alcoves, and similar openings.
- E. Maintain reference markers, holes, and openings that are in place or marked for future cutting by repeating on carpet as marked on subfloor. Use nonpermanent, nonstaining marking device.
- F. Protect carpet against damage from construction operations and placement of equipment and fixtures during the remainder of construction period. Use protection methods recommended in writing by carpet manufacturer and carpet adhesive manufacturer.

END OF SECTION 09 68 16

SECTION 23 05 13 - COMMON MOTOR REQUIREMENTS FOR HVAC EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions, Division 00 Information for Bidders, and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes general requirements for single-phase and polyphase, general-purpose, horizontal, small and medium, squirrel-cage induction motors for use on ac power systems up to 600 V and installed at equipment manufacturer's factory or shipped separately by equipment manufacturer for field installation.

1.3 COORDINATION

- A. Coordinate features of motors, installed units, and accessory devices to be compatible with the following:
 - 1. Motor controllers.
 - 2. Torque, speed, and horsepower requirements of the load.
 - 3. Ratings and characteristics of supply circuit and required control sequence.
 - 4. Ambient and environmental conditions of installation location.

PART 2 - PRODUCTS

2.1 GENERAL MOTOR REQUIREMENTS

- A. Comply with NEMA MG 1 unless otherwise indicated.
- B. Comply with IEEE 841 for severe-duty motors.

2.2 MOTOR CHARACTERISTICS

- A. Duty: Continuous duty at ambient temperature of 40 deg C and at altitude of 3300 feet above sea level.
- B. Capacity and Torque Characteristics: Sufficient to start, accelerate, and operate connected loads at designated speeds, at installed altitude and environment, with indicated operating sequence, and without exceeding nameplate ratings or considering service factor.

2.3 POLYPHASE MOTORS

- A. Description: NEMA MG 1, Design B, medium induction motor.
- B. Efficiency: Energy efficient, as defined in NEMA MG 1.
- C. Service Factor: 1.15.
- D. Multispeed Motors: Variable torque.
 - 1. For motors with 2:1 speed ratio, consequent pole, single winding.
 - 2. For motors with other than 2:1 speed ratio, separate winding for each speed.
- E. Multispeed Motors: Separate winding for each speed.
- F. Rotor: Random-wound, squirrel cage.
- G. Bearings: Regreasable, shielded, antifriction ball bearings suitable for radial and thrust loading.
- H. Temperature Rise: Match insulation rating.
- I. Insulation: Class F.
- J. Code Letter Designation:
 - 1. Motors 15 HP and Larger: NEMA starting Code F or Code G.
 - 2. Motors Smaller than 15 HP: Manufacturer's standard starting characteristic.
- K. Enclosure Material: Cast iron for motor frame sizes 324T and larger; rolled steel for motor frame sizes smaller than 324T.

2.4 POLYPHASE MOTORS WITH ADDITIONAL REQUIREMENTS

- A. Motors Used with Reduced-Voltage and Multispeed Controllers: Match wiring connection requirements for controller with required motor leads. Provide terminals in motor terminal box, suited to control method.
- B. Motors Used with Variable Frequency Controllers: Ratings, characteristics, and features coordinated with and approved by controller manufacturer.
 - 1. Windings: Copper magnet wire with moisture-resistant insulation varnish, designed and tested to resist transient spikes, high frequencies, and short time rise pulses produced by pulse-width modulated inverters.
 - 2. Energy- and Premium-Efficient Motors: Class B temperature rise; Class F insulation.
 - 3. Inverter-Duty Motors: Class F temperature rise; Class H insulation.
 - 4. Thermal Protection: Comply with NEMA MG 1 requirements for thermally protected motors.
- C. Severe-Duty Motors: Comply with IEEE 841, with 1.15 minimum service factor.

2.5 SINGLE-PHASE MOTORS

- A. Motors larger than 1/20 hp shall be one of the following, to suit starting torque and requirements of specific motor application:
 - 1. Permanent-split capacitor.
 - 2. Split phase.
 - 3. Capacitor start, inductor run.
 - 4. Capacitor start, capacitor run.
- B. Multispeed Motors: Variable-torque, permanent-split-capacitor type.
- C. Bearings: Prelubricated, antifriction ball bearings or sleeve bearings suitable for radial and thrust loading.
- D. Motors 1/20 HP and Smaller: Shaded-pole type.
- E. Thermal Protection: Internal protection to automatically open power supply circuit to motor when winding temperature exceeds a safe value calibrated to temperature rating of motor insulation. Thermal-protection device shall automatically reset when motor temperature returns to normal range.

PART 3 - EXECUTION (Not Applicable)

END OF SECTION 23 05 13

SECTION 23 05 29 - HANGERS AND SUPPORTS FOR HVAC PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions, Division 00 Information for Bidders, and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Metal pipe hangers and supports.
 - 2. Trapeze pipe hangers.
 - 3. Thermal-hanger shield inserts.
 - 4. Fastener systems.
- B. Related Sections:
 - 1. Section 23 31 13 "Metal Ducts" for duct hangers and supports.

1.3 DEFINITIONS

A. MSS: Manufacturers Standardization Society of The Valve and Fittings Industry Inc.

1.4 PERFORMANCE REQUIREMENTS

- A. Delegated Design: Design trapeze pipe hangers and equipment supports, including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated.
- B. Structural Performance: Hangers and supports for HVAC piping and equipment shall withstand the effects of gravity loads and stresses within limits and under conditions indicated according to ASCE/SEI 7.
 - 1. Design supports for multiple pipes, including pipe stands, capable of supporting combined weight of supported systems, system contents, and test water.
 - 2. Design equipment supports capable of supporting combined operating weight of supported equipment and connected systems and components.

1.5 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

1.6 INFORMATIONAL SUBMITTALS

A. Welding certificates.

1.7 QUALITY ASSURANCE

- A. Structural Steel Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code Steel."
- B. Pipe Welding Qualifications: Qualify procedures and operators according to ASME Boiler and Pressure Vessel Code.

PART 2 - PRODUCTS

2.1 METAL PIPE HANGERS AND SUPPORTS

- A. Carbon-Steel Pipe Hangers and Supports:
 - 1. Description: MSS SP-58, Types 1 through 58, factory-fabricated components.
 - 2. Galvanized Metallic Coatings: Pregalvanized or hot dipped.
 - 3. Nonmetallic Coatings: Plastic coating, jacket, or liner.
 - 4. Padded Hangers: Hanger with fiberglass or other pipe insulation pad or cushion to support bearing surface of piping.
 - 5. Hanger Rods: Continuous-thread rod, nuts, and washer made of carbon steel.
- B. Stainless-Steel Pipe Hangers and Supports:
 - 1. Description: MSS SP-58, Types 1 through 58, factory-fabricated components.
 - 2. Padded Hangers: Hanger with fiberglass or other pipe insulation pad or cushion to support bearing surface of piping.
 - 3. Hanger Rods: Continuous-thread rod, nuts, and washer made of stainless steel.

2.2 TRAPEZE PIPE HANGERS

A. Description: MSS SP-69, Type 59, shop- or field-fabricated pipe-support assembly made from structural carbon-steel shapes with MSS SP-58 carbon-steel hanger rods, nuts, saddles, and U-bolts.

2.3 THERMAL-HANGER SHIELD INSERTS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Carpenter & Paterson, Inc.
 - 2. Clement Support Services.
 - 3. ERICO International Corporation.
 - 4. National Pipe Hanger Corporation.
 - 5. PHS Industries, Inc.
 - 6. Pipe Shields, Inc.; a subsidiary of Piping Technology & Products, Inc.

- 7. Piping Technology & Products, Inc.
- 8. Rilco Manufacturing Co., Inc.
- B. Insulation-Insert Material for Cold Piping: ASTM C 552, Type II cellular glass with 100-psig or ASTM C 591, Type VI, Grade 1 polyisocyanurate with 125-psig minimum compressive strength and vapor barrier.
- C. Insulation-Insert Material for Hot Piping: Water-repellent treated, ASTM C 533, Type I calcium silicate with 100-psig or ASTM C 591, Type VI, Grade 1 polyisocyanurate with 125-psig minimum compressive strength.
- D. For Trapeze or Clamped Systems: Insert and shield shall cover entire circumference of pipe.
- E. For Clevis or Band Hangers: Insert and shield shall cover lower 180 degrees of pipe.
- F. Insert Length: Extend 2 inches beyond sheet metal shield for piping operating below ambient air temperature.

2.4 FASTENER SYSTEMS

- A. Powder-Actuated Fasteners: Threaded-steel stud, for use in hardened portland cement concrete with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.
- B. Mechanical-Expansion Anchors: Insert-wedge-type, zinc-coated steel anchors, for use in hardened portland cement concrete; with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

2.5 MISCELLANEOUS MATERIALS

- A. Structural Steel: ASTM A 36/A 36M, carbon-steel plates, shapes, and bars; black and galvanized.
- B. Grout: ASTM C 1107, factory-mixed and -packaged, dry, hydraulic-cement, nonshrink and nonmetallic grout; suitable for interior and exterior applications.
 - 1. Properties: Nonstaining, noncorrosive, and nongaseous.
 - 2. Design Mix: 5000-psi, 28-day compressive strength.

PART 3 - EXECUTION

3.1 HANGER AND SUPPORT INSTALLATION

- A. Metal Pipe-Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Install hangers, supports, clamps, and attachments as required to properly support piping from the building structure.
- B. Metal Trapeze Pipe-Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Arrange for grouping of parallel runs of horizontal piping, and support together on field-fabricated trapeze pipe hangers.

- 1. Pipes of Various Sizes: Support together and space trapezes for smallest pipe size or install intermediate supports for smaller diameter pipes as specified for individual pipe hangers.
- 2. Field fabricate from ASTM A 36/A 36M, carbon-steel shapes selected for loads being supported. Weld steel according to AWS D1.1/D1.1M.
- C. Metal Framing System Installation: Arrange for grouping of parallel runs of piping, and support together on field-assembled metal framing systems.
- D. Thermal-Hanger Shield Installation: Install in pipe hanger or shield for insulated piping.
- E. Fastener System Installation:
 - 1. Install powder-actuated fasteners for use in lightweight concrete or concrete slabs less than 4 inches thick in concrete after concrete is placed and completely cured. Use operators that are licensed by powder-actuated tool manufacturer. Install fasteners according to powder-actuated tool manufacturer's operating manual.
 - 2. Install mechanical-expansion anchors in concrete after concrete is placed and completely cured. Install fasteners according to manufacturer's written instructions.

F. Pipe Stand Installation:

- 1. Pipe Stand Types except Curb-Mounted Type: Assemble components and mount on smooth roof surface. Do not penetrate roof membrane.
- 2. Curb-Mounted-Type Pipe Stands: Assemble components or fabricate pipe stand and mount on permanent, stationary roof curb.
- G. Install hangers and supports complete with necessary attachments, inserts, bolts, rods, nuts, washers, and other accessories.
- H. Equipment Support Installation: Fabricate from welded-structural-steel shapes.
- I. Install hangers and supports to allow controlled thermal and seismic movement of piping systems, to permit freedom of movement between pipe anchors, and to facilitate action of expansion joints, expansion loops, expansion bends, and similar units.
- J. Install lateral bracing with pipe hangers and supports to prevent swaying.
- K. Install building attachments within concrete slabs or attach to structural steel. Install additional attachments at concentrated loads, including valves, flanges, and strainers, NPS 2-1/2 and larger and at changes in direction of piping. Install concrete inserts before concrete is placed; fasten inserts to forms and install reinforcing bars through openings at top of inserts.
- L. Load Distribution: Install hangers and supports so that piping live and dead loads and stresses from movement will not be transmitted to connected equipment.
- M. Pipe Slopes: Install hangers and supports to provide indicated pipe slopes and to not exceed maximum pipe deflections allowed by ASME B31.9 for building services piping.
- N. Insulated Piping:
 - 1. Attach clamps and spacers to piping.

- a. Piping Operating above Ambient Air Temperature: Clamp may project through insulation.
- b. Piping Operating below Ambient Air Temperature: Use thermal-hanger shield insert with clamp sized to match OD of insert.
- c. Do not exceed pipe stress limits allowed by ASME B31.9 for building services piping.
- 2. Install MSS SP-58, Type 39, protection saddles if insulation without vapor barrier is indicated. Fill interior voids with insulation that matches adjoining insulation.
 - a. Option: Thermal-hanger shield inserts may be used. Include steel weight-distribution plate for pipe NPS 4 and larger if pipe is installed on rollers.
- 3. Install MSS SP-58, Type 40, protective shields on cold piping with vapor barrier. Shields shall span an arc of 180 degrees.
 - a. Option: Thermal-hanger shield inserts may be used. Include steel weight-distribution plate for pipe NPS 4 and larger if pipe is installed on rollers.
- 4. Shield Dimensions for Pipe: Not less than the following:
 - a. NPS 1/4 to NPS 3-1/2: 12 inches long and 0.048 inch thick.
 - b. NPS 4: 12 inches long and 0.06 inch thick.
 - c. NPS 5 and NPS 6: 18 inches long and 0.06 inch thick.
 - d. NPS 8 to NPS 14: 24 inches long and 0.075 inch thick.
 - e. NPS 16 to NPS 24: 24 inches long and 0.105 inch thick.
- 5. Pipes NPS 8 and Larger: Include wood or reinforced calcium-silicate-insulation inserts of length at least as long as protective shield.
- 6. Thermal-Hanger Shields: Install with insulation same thickness as piping insulation.

3.2 METAL FABRICATIONS

- A. Cut, drill, and fit miscellaneous metal fabrications for trapeze pipe hangers and equipment supports.
- B. Fit exposed connections together to form hairline joints. Field weld connections that cannot be shop welded because of shipping size limitations.
- C. Field Welding: Comply with AWS D1.1/D1.1M procedures for shielded, metal arc welding; appearance and quality of welds; and methods used in correcting welding work; and with the following:
 - 1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
 - 2. Obtain fusion without undercut or overlap.
 - 3. Remove welding flux immediately.
 - 4. Finish welds at exposed connections so no roughness shows after finishing and so contours of welded surfaces match adjacent contours.

3.3 ADJUSTING

- A. Hanger Adjustments: Adjust hangers to distribute loads equally on attachments and to achieve indicated slope of pipe.
- B. Trim excess length of continuous-thread hanger and support rods to 1-1/2 inches.

3.4 PAINTING

- A. Touchup: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.
 - 1. Apply paint by brush or spray to provide a minimum dry film thickness of 2.0 mils.
- B. Touchup: Clean and touchup painting of field welds, bolted connections, and abraded areas of shop paint on miscellaneous metal.
- C. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A 780.

3.5 HANGER AND SUPPORT SCHEDULE

- A. Specific hanger and support requirements are in Sections specifying piping systems and equipment.
- B. Comply with MSS SP-69 for pipe-hanger selections and applications that are not specified in piping system Sections.
- C. Use hangers and supports with galvanized metallic coatings for piping and equipment that will not have field-applied finish.
- D. Use nonmetallic coatings on attachments for electrolytic protection where attachments are in direct contact with copper tubing.
- E. Use carbon-steel pipe hangers and supports and metal framing systems and attachments for general service applications.
- F. Use stainless-steel pipe hangers and stainless-steel or corrosion-resistant attachments for hostile environment applications.
- G. Use padded hangers for piping that is subject to scratching.
- H. Use thermal-hanger shield inserts for insulated piping and tubing.
- I. Horizontal-Piping Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Adjustable, Steel Clevis Hangers (MSS Type 1): For suspension of noninsulated or insulated, stationary pipes NPS 1/2 to NPS 30.
 - 2. Yoke-Type Pipe Clamps (MSS Type 2): For suspension of up to 1050 deg F, pipes NPS 4 to NPS 24, requiring up to 4 inches of insulation.

- 3. Carbon- or Alloy-Steel, Double-Bolt Pipe Clamps (MSS Type 3): For suspension of pipes NPS 3/4 to NPS 36, requiring clamp flexibility and up to 4 inches of insulation.
- 4. Steel Pipe Clamps (MSS Type 4): For suspension of cold and hot pipes NPS 1/2 to NPS 24 if little or no insulation is required.
- 5. Pipe Hangers (MSS Type 5): For suspension of pipes NPS 1/2 to NPS 4, to allow off-center closure for hanger installation before pipe erection.
- 6. Adjustable, Swivel Split- or Solid-Ring Hangers (MSS Type 6): For suspension of noninsulated, stationary pipes NPS 3/4 to NPS 8.
- 7. Adjustable, Steel Band Hangers (MSS Type 7): For suspension of noninsulated, stationary pipes NPS 1/2 to NPS 8.
- 8. Adjustable Band Hangers (MSS Type 9): For suspension of noninsulated, stationary pipes NPS 1/2 to NPS 8.
- 9. Adjustable, Swivel-Ring Band Hangers (MSS Type 10): For suspension of noninsulated, stationary pipes NPS 1/2 to NPS 8.
- 10. Split Pipe Ring with or without Turnbuckle Hangers (MSS Type 11): For suspension of noninsulated, stationary pipes NPS 3/8 to NPS 8.
- 11. Extension Hinged or Two-Bolt Split Pipe Clamps (MSS Type 12): For suspension of noninsulated, stationary pipes NPS 3/8 to NPS 3.
- 12. U-Bolts (MSS Type 24): For support of heavy pipes NPS 1/2 to NPS 30.
- 13. Clips (MSS Type 26): For support of insulated pipes not subject to expansion or contraction.
- 14. Pipe Saddle Supports (MSS Type 36): For support of pipes NPS 4 to NPS 36, with steel-pipe base stanchion support and cast-iron floor flange or carbon-steel plate.
- 15. Pipe Stanchion Saddles (MSS Type 37): For support of pipes NPS 4 to NPS 36, with steel-pipe base stanchion support and cast-iron floor flange or carbon-steel plate, and with U-bolt to retain pipe.
- 16. Adjustable Pipe Saddle Supports (MSS Type 38): For stanchion-type support for pipes NPS 2-1/2 to NPS 36 if vertical adjustment is required, with steel-pipe base stanchion support and cast-iron floor flange.
- 17. Single-Pipe Rolls (MSS Type 41): For suspension of pipes NPS 1 to NPS 30, from two rods if longitudinal movement caused by expansion and contraction might occur.
- 18. Adjustable Roller Hangers (MSS Type 43): For suspension of pipes NPS 2-1/2 to NPS 24, from single rod if horizontal movement caused by expansion and contraction might occur.
- 19. Complete Pipe Rolls (MSS Type 44): For support of pipes NPS 2 to NPS 42 if longitudinal movement caused by expansion and contraction might occur but vertical adjustment is not necessary.
- 20. Pipe Roll and Plate Units (MSS Type 45): For support of pipes NPS 2 to NPS 24 if small horizontal movement caused by expansion and contraction might occur and vertical adjustment is not necessary.
- 21. Adjustable Pipe Roll and Base Units (MSS Type 46): For support of pipes NPS 2 to NPS 30 if vertical and lateral adjustment during installation might be required in addition to expansion and contraction.
- J. Vertical-Piping Clamps: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - Extension Pipe or Riser Clamps (MSS Type 8): For support of pipe risers NPS 3/4 to NPS 24.
 - 2. Carbon- or Alloy-Steel Riser Clamps (MSS Type 42): For support of pipe risers NPS 3/4 to NPS 24 if longer ends are required for riser clamps.
- K. Hanger-Rod Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

- 1. Steel Turnbuckles (MSS Type 13): For adjustment up to 6 inches for heavy loads.
- 2. Steel Clevises (MSS Type 14): For 120 to 450 deg F piping installations.
- 3. Swivel Turnbuckles (MSS Type 15): For use with MSS Type 11, split pipe rings.
- 4. Malleable-Iron Sockets (MSS Type 16): For attaching hanger rods to various types of building attachments.
- 5. Steel Weldless Eye Nuts (MSS Type 17): For 120 to 450 deg F piping installations.
- L. Building Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Steel or Malleable Concrete Inserts (MSS Type 18): For upper attachment to suspend pipe hangers from concrete ceiling.
 - 2. Top-Beam C-Clamps (MSS Type 19): For use under roof installations with bar-joist construction, to attach to top flange of structural shape.
 - 3. Side-Beam or Channel Clamps (MSS Type 20): For attaching to bottom flange of beams, channels, or angles.
 - 4. Center-Beam Clamps (MSS Type 21): For attaching to center of bottom flange of beams.
 - 5. Welded Beam Attachments (MSS Type 22): For attaching to bottom of beams if loads are considerable and rod sizes are large.
 - 6. C-Clamps (MSS Type 23): For structural shapes.
 - 7. Top-Beam Clamps (MSS Type 25): For top of beams if hanger rod is required tangent to flange edge.
 - 8. Side-Beam Clamps (MSS Type 27): For bottom of steel I-beams.
 - 9. Steel-Beam Clamps with Eye Nuts (MSS Type 28): For attaching to bottom of steel I-beams for heavy loads.
 - 10. Linked-Steel Clamps with Eye Nuts (MSS Type 29): For attaching to bottom of steel I-beams for heavy loads, with link extensions.
 - 11. Malleable-Beam Clamps with Extension Pieces (MSS Type 30): For attaching to structural steel.
 - 12. Welded-Steel Brackets: For support of pipes from below or for suspending from above by using clip and rod. Use one of the following for indicated loads:
 - a. Light (MSS Type 31): 750 lb.
 - b. Medium (MSS Type 32): 1500 lb.
 - c. Heavy (MSS Type 33): 3000 lb.
 - 13. Side-Beam Brackets (MSS Type 34): For sides of steel or wooden beams.
 - 14. Plate Lugs (MSS Type 57): For attaching to steel beams if flexibility at beam is required.
 - 15. Horizontal Travelers (MSS Type 58): For supporting piping systems subject to linear horizontal movement where headroom is limited.
- M. Saddles and Shields: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Steel-Pipe-Covering Protection Saddles (MSS Type 39): To fill interior voids with insulation that matches adjoining insulation.
 - 2. Protection Shields (MSS Type 40): Of length recommended in writing by manufacturer to prevent crushing insulation.
 - 3. Thermal-Hanger Shield Inserts: For supporting insulated pipe.
- N. Spring Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Restraint-Control Devices (MSS Type 47): Where indicated to control piping movement.

- 2. Spring Cushions (MSS Type 48): For light loads if vertical movement does not exceed 1-1/4 inches.
- 3. Spring-Cushion Roll Hangers (MSS Type 49): For equipping Type 41, roll hanger with springs.
- 4. Spring Sway Braces (MSS Type 50): To retard sway, shock, vibration, or thermal expansion in piping systems.
- 5. Variable-Spring Hangers (MSS Type 51): Preset to indicated load and limit variability factor to 25 percent to allow expansion and contraction of piping system from hanger.
- 6. Variable-Spring Base Supports (MSS Type 52): Preset to indicated load and limit variability factor to 25 percent to allow expansion and contraction of piping system from base support.
- 7. Variable-Spring Trapeze Hangers (MSS Type 53): Preset to indicated load and limit variability factor to 25 percent to allow expansion and contraction of piping system from trapeze support.
- 8. Constant Supports: For critical piping stress and if necessary to avoid transfer of stress from one support to another support, critical terminal, or connected equipment. Include auxiliary stops for erection, hydrostatic test, and load-adjustment capability. These supports include the following types:
 - a. Horizontal (MSS Type 54): Mounted horizontally.
 - b. Vertical (MSS Type 55): Mounted vertically.
 - c. Trapeze (MSS Type 56): Two vertical-type supports and one trapeze member.
- O. Comply with MSS SP-69 for trapeze pipe-hanger selections and applications that are not specified in piping system Sections.
- P. Comply with MFMA-103 for metal framing system selections and applications that are not specified in piping system Sections.
- Q. Use powder-actuated fasteners or mechanical-expansion anchors instead of building attachments where required in concrete construction.

END OF SECTION 23 05 29

SECTION 23 05 53 - IDENTIFICATION FOR HVAC PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions, Division 00 Information for Bidders, and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Equipment labels.
 - 2. Pipe labels.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Samples: For color, letter style, and graphic representation required for each identification material and device.
- C. Equipment Label Schedule: Include a listing of all equipment to be labeled with the proposed content for each label.
- D. Valve numbering scheme.
- E. Valve Schedules: For each piping system to include in maintenance manuals.

1.4 COORDINATION

- A. Coordinate installation of identifying devices with completion of covering and painting of surfaces where devices are to be applied.
- B. Coordinate installation of identifying devices with locations of access panels and doors.
- C. Install identifying devices before installing acoustical ceilings and similar concealment.

PART 2 - PRODUCTS

2.1 EQUIPMENT LABELS

A. Metal Labels for Equipment:

- 1. Material and Thickness: Brass, 0.032-inch or anodized aluminum, 0.032-inch minimum thickness, and having predrilled or stamped holes for attachment hardware.
- 2. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
- 3. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.
- 4. Fasteners: Stainless-steel rivets.
- 5. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.

B. Plastic Labels for Equipment:

- 1. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/16 inch thick, and having predrilled holes for attachment hardware.
- 2. Letter Color: White.
- 3. Background Color: Black.
- 4. Maximum Temperature: Able to withstand temperatures up to 160 deg F.
- 5. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
- 6. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.
- 7. Fasteners: Stainless-steel rivets.
- 8. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.
- C. Label Content: Include equipment's Drawing designation or unique equipment number, Drawing numbers where equipment is indicated (plans, details, and schedules), plus the Specification Section number and title where equipment is specified.
- D. Equipment Label Schedule: For each item of equipment to be labeled, on 8-1/2-by-11-inch bond paper. Tabulate equipment identification number and identify Drawing numbers where equipment is indicated (plans, details, and schedules), plus the Specification Section number and title where equipment is specified. Equipment schedule shall be included in operation and maintenance data.

2.2 PIPE LABELS

- A. General Requirements for Manufactured Pipe Labels: Preprinted, color-coded, with lettering indicating service, and showing flow direction.
- B. Pretensioned Pipe Labels: Precoiled, semirigid plastic formed to cover full circumference of pipe and to attach to pipe without fasteners or adhesive.
- C. Self-Adhesive Pipe Labels: Printed plastic with contact-type, permanent-adhesive backing.
- D. Pipe Label Contents: Include identification of piping service using same designations or abbreviations as used on Drawings, pipe size, and an arrow indicating flow direction.
 - 1. Flow-Direction Arrows: Integral with piping system service lettering to accommodate both directions, or as separate unit on each pipe label to indicate flow direction.
 - 2. Lettering Size: At least 1-1/2 inches high.

PART 3 - EXECUTION

3.1 PREPARATION

A. Clean piping and equipment surfaces of substances that could impair bond of identification devices, including dirt, oil, grease, release agents, and incompatible primers, paints, and encapsulants.

3.2 EQUIPMENT LABEL INSTALLATION

- A. Install or permanently fasten labels on each major item of mechanical equipment.
- B. Locate equipment labels where accessible and visible.

3.3 PIPE LABEL INSTALLATION

- A. Locate pipe labels where piping is exposed or above accessible ceilings in finished spaces; machine rooms; accessible maintenance spaces such as shafts, tunnels, and plenums; and exterior exposed locations as follows:
 - 1. Near each valve and control device.
 - 2. Near each branch connection, excluding short takeoffs for fixtures and terminal units. Where flow pattern is not obvious, mark each pipe at branch.
 - 3. Near penetrations through walls, floors, ceilings, and inaccessible enclosures.
 - 4. At access doors, manholes, and similar access points that permit view of concealed piping.
 - 5. Near major equipment items and other points of origination and termination.
 - 6. Spaced at maximum intervals of 50 feet along each run. Reduce intervals to 25 feet in areas of congested piping and equipment.
 - 7. On piping above removable acoustical ceilings. Omit intermediately spaced labels.

B. Pipe Label Color Schedule:

- 1. Steam Supply and Condensate Piping:
 - a. Background Color: Yellow.
 - b. Letter Color: Black.

END OF SECTION 23 05 53

SECTION 23 05 93 - TESTING, ADJUSTING, AND BALANCING FOR HVAC

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions, Division 00 Information for Bidders, and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Balancing Air Systems:
 - a. Constant-volume air systems.

1.3 DEFINITIONS

- A. AABC: Associated Air Balance Council.
- B. NEBB: National Environmental Balancing Bureau.
- C. TAB: Testing, adjusting, and balancing.
- D. TABB: Testing, Adjusting, and Balancing Bureau.
- E. TAB Specialist: An entity engaged to perform TAB Work.

1.4 INFORMATIONAL SUBMITTALS

- A. Certified TAB reports.
- B. Sample report forms.
- C. Instrument calibration reports, to include the following:
 - 1. Instrument type and make.
 - 2. Serial number.
 - 3. Application.
 - 4. Dates of use.
 - 5. Dates of calibration.

1.5 QUALITY ASSURANCE

A. TAB Contractor Qualifications: Engage a TAB entity certified by AABC NEBB or TABB.

- 1. TAB Field Supervisor: Employee of the TAB contractor and certified by AABC NEBB or TABB.
- 2. TAB Technician: Employee of the TAB contractor and who is certified by AABC NEBB or TABB as a TAB technician.
- B. Certify TAB field data reports and perform the following:
 - Review field data reports to validate accuracy of data and to prepare certified TAB reports.
 - 2. Certify that the TAB team complied with the approved TAB plan and the procedures specified and referenced in this Specification.
- C. TAB Report Forms: Use standard TAB contractor's forms approved by Architect.
- D. Instrumentation Type, Quantity, Accuracy, and Calibration: As described in ASHRAE 111, Section 5, "Instrumentation."
- E. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1, Section 7.2.2 "Air Balancing."
- F. ASHRAE/IESNA Compliance: Applicable requirements in ASHRAE/IESNA 90.1, Section 6.7.2.3 "System Balancing."

1.6 PROJECT CONDITIONS

- A. Full Owner Occupancy: Owner will occupy the site and existing building during entire TAB period. Cooperate with Owner during TAB operations to minimize conflicts with Owner's operations.
- B. Partial Owner Occupancy: Owner may occupy completed areas of building before Substantial Completion. Cooperate with Owner during TAB operations to minimize conflicts with Owner's operations.

1.7 COORDINATION

- A. Notice: Provide seven days' advance notice for each test. Include scheduled test dates and times.
- B. Perform TAB after leakage and pressure tests on air and water distribution systems have been satisfactorily completed.

PART 2 - PRODUCTS (Not Applicable)

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine the Contract Documents to become familiar with Project requirements and to discover conditions in systems' designs that may preclude proper TAB of systems and equipment.

- B. Examine systems for installed balancing devices, such as test ports, gage cocks, thermometer wells, flow-control devices, balancing valves and fittings, and manual volume dampers. Verify that locations of these balancing devices are accessible.
- C. Examine the approved submittals for HVAC systems and equipment.
- D. Examine design data including HVAC system descriptions, statements of design assumptions for environmental conditions and systems' output, and statements of philosophies and assumptions about HVAC system and equipment controls.
- E. Examine ceiling plenums and underfloor air plenums used for supply, return, or relief air to verify that they meet the leakage class of connected ducts as specified in Section 23 31 13 "Metal Ducts" and are properly separated from adjacent areas. Verify that penetrations in plenum walls are sealed and fire-stopped if required.
- F. Examine equipment performance data including fan and pump curves.
 - 1. Relate performance data to Project conditions and requirements, including system effects that can create undesired or unpredicted conditions that cause reduced capacities in all or part of a system.
 - 2. Calculate system-effect factors to reduce performance ratings of HVAC equipment when installed under conditions different from the conditions used to rate equipment performance. To calculate system effects for air systems, use tables and charts found in AMCA 201, "Fans and Systems," or in SMACNA's "HVAC Systems Duct Design." Compare results with the design data and installed conditions.
- G. Examine system and equipment installations and verify that field quality-control testing, cleaning, and adjusting specified in individual Sections have been performed.
- H. Examine test reports specified in individual system and equipment Sections.
- I. Examine HVAC equipment and filters and verify that bearings are greased, belts are aligned and tight, and equipment with functioning controls is ready for operation.
- J. Examine terminal units, such as variable-air-volume boxes, and verify that they are accessible and their controls are connected and functioning.
- K. Examine strainers. Verify that startup screens are replaced by permanent screens with indicated perforations.
- L. Examine three-way valves for proper installation for their intended function of diverting or mixing fluid flows.
- M. Examine heat-transfer coils for correct piping connections and for clean and straight fins.
- N. Examine system pumps to ensure absence of entrained air in the suction piping.
- O. Examine operating safety interlocks and controls on HVAC equipment.
- P. Report deficiencies discovered before and during performance of TAB procedures. Observe and record system reactions to changes in conditions. Record default set points if different from indicated values

3.2 PREPARATION

- A. Prepare a TAB plan that includes strategies and step-by-step procedures.
- B. Complete system-readiness checks and prepare reports. Verify the following:
 - 1. Permanent electrical-power wiring is complete.
 - 2. Hydronic systems are filled, clean, and free of air.
 - 3. Automatic temperature-control systems are operational.
 - 4. Equipment and duct access doors are securely closed.
 - 5. Balance, smoke, and fire dampers are open.
 - 6. Isolating and balancing valves are open and control valves are operational.
 - 7. Ceilings are installed in critical areas where air-pattern adjustments are required and access to balancing devices is provided.
 - 8. Windows and doors can be closed so indicated conditions for system operations can be met.

3.3 GENERAL PROCEDURES FOR TESTING AND BALANCING

- A. Perform testing and balancing procedures on each system according to the procedures contained in SMACNA's "HVAC Systems Testing, Adjusting, and Balancing" and in this Section.
 - 1. Comply with requirements in ASHRAE 62.1, Section 7.2.2 "Air Balancing."
- B. Cut insulation, ducts, pipes, and equipment cabinets for installation of test probes to the minimum extent necessary for TAB procedures.
 - 1. After testing and balancing, patch probe holes in ducts with same material and thickness as used to construct ducts.
 - 2. After testing and balancing, install test ports and duct access doors that comply with requirements in Section 23 33 00 "Air Duct Accessories."
 - 3. Install and join new insulation that matches removed materials. Restore insulation, coverings, vapor barrier, and finish according to Section 23 07 13 "Duct Insulation," Section 23 07 16 "HVAC Equipment Insulation," and Section 23 07 19 "HVAC Piping Insulation."
- C. Mark equipment and balancing devices, including damper-control positions, valve position indicators, fan-speed-control levers, and similar controls and devices, with paint or other suitable, permanent identification material to show final settings.
- D. Take and report testing and balancing measurements in inch-pound (IP) units.

3.4 GENERAL PROCEDURES FOR BALANCING AIR SYSTEMS

- A. Prepare test reports for both fans and outlets. Obtain manufacturer's outlet factors and recommended testing procedures. Crosscheck the summation of required outlet volumes with required fan volumes.
- B. Prepare schematic diagrams of systems' "as-built" duct layouts.
- C. For variable-air-volume systems, develop a plan to simulate diversity.

- D. Determine the best locations in main and branch ducts for accurate duct-airflow measurements.
- E. Check airflow patterns from the outdoor-air louvers and dampers and the return- and exhaust-air dampers through the supply-fan discharge and mixing dampers.
- F. Locate start-stop and disconnect switches, electrical interlocks, and motor starters.
- G. Verify that motor starters are equipped with properly sized thermal protection.
- H. Check dampers for proper position to achieve desired airflow path.
- I. Check for airflow blockages.
- J. Check condensate drains for proper connections and functioning.
- K. Check for proper sealing of air-handling-unit components.
- L. Verify that air duct system is sealed as specified in Section 23 31 13 "Metal Ducts."

3.5 PROCEDURES FOR CONSTANT-VOLUME AIR SYSTEMS

- A. Adjust fans to deliver total indicated airflows within the maximum allowable fan speed listed by fan manufacturer.
 - Measure total airflow.
 - a. Where sufficient space in ducts is unavailable for Pitot-tube traverse measurements, measure airflow at terminal outlets and inlets and calculate the total airflow.
 - 2. Measure fan static pressures as follows to determine actual static pressure:
 - Measure outlet static pressure as far downstream from the fan as practical and upstream from restrictions in ducts such as elbows and transitions.
 - b. Measure static pressure directly at the fan outlet or through the flexible connection.
 - c. Measure inlet static pressure of single-inlet fans in the inlet duct as near the fan as possible, upstream from the flexible connection, and downstream from duct restrictions.
 - d. Measure inlet static pressure of double-inlet fans through the wall of the plenum that houses the fan.
 - 3. Measure static pressure across each component that makes up an air-handling unit, rooftop unit, and other air-handling and -treating equipment.
 - a. Report the cleanliness status of filters and the time static pressures are measured.
 - 4. Measure static pressures entering and leaving other devices, such as sound traps, heat-recovery equipment, and air washers, under final balanced conditions.
 - 5. Review Record Documents to determine variations in design static pressures versus actual static pressures. Calculate actual system-effect factors. Recommend adjustments to accommodate actual conditions.

- 6. Obtain approval from Architect for adjustment of fan speed higher or lower than indicated speed. Comply with requirements in HVAC Sections for air-handling units for adjustment of fans, belts, and pulley sizes to achieve indicated air-handling-unit performance.
- 7. Do not make fan-speed adjustments that result in motor overload. Consult equipment manufacturers about fan-speed safety factors. Modulate dampers and measure fan-motor amperage to ensure that no overload will occur. Measure amperage in full-cooling, full-heating, economizer, and any other operating mode to determine the maximum required brake horsepower.
- B. Adjust volume dampers for main duct, submain ducts, and major branch ducts to indicated airflows within specified tolerances.
 - 1. Measure airflow of submain and branch ducts.
 - a. Where sufficient space in submain and branch ducts is unavailable for Pitot-tube traverse measurements, measure airflow at terminal outlets and inlets and calculate the total airflow for that zone.
 - 2. Measure static pressure at a point downstream from the balancing damper, and adjust volume dampers until the proper static pressure is achieved.
 - 3. Remeasure each submain and branch duct after all have been adjusted. Continue to adjust submain and branch ducts to indicated airflows within specified tolerances.
- C. Measure air outlets and inlets without making adjustments.
 - 1. Measure terminal outlets using a direct-reading hood or outlet manufacturer's written instructions and calculating factors.
- D. Adjust air outlets and inlets for each space to indicated airflows within specified tolerances of indicated values. Make adjustments using branch volume dampers rather than extractors and the dampers at air terminals.
 - 1. Adjust each outlet in same room or space to within specified tolerances of indicated quantities without generating noise levels above the limitations prescribed by the Contract Documents.
 - 2. Adjust patterns of adjustable outlets for proper distribution without drafts.

3.6 PROCEDURES FOR MOTORS

- A. Motors, 1/2 HP and Larger: Test at final balanced conditions and record the following data:
 - 1. Manufacturer's name, model number, and serial number.
 - 2. Motor horsepower rating.
 - 3. Motor rpm.
 - 4. Efficiency rating.
 - 5. Nameplate and measured voltage, each phase.
 - 6. Nameplate and measured amperage, each phase.
 - 7. Starter thermal-protection-element rating.
- B. Motors Driven by Variable-Frequency Controllers: Test for proper operation at speeds varying from minimum to maximum. Test the manual bypass of the controller to prove proper operation. Record observations including name of controller manufacturer, model number, serial number, and nameplate data.

3.7 TOLERANCES

- A. Set HVAC system's air flow rates and water flow rates within the following tolerances:
 - 1. Supply, Return, and Exhaust Fans and Equipment with Fans: Plus or minus 5 percent.
 - 2. Air Outlets and Inlets: Plus or minus 5 percent.
 - 3. Heating-Water Flow Rate: Plus or minus 5 percent.

3.8 REPORTING

A. Initial Construction-Phase Report: Based on examination of the Contract Documents as specified in "Examination" Article, prepare a report on the adequacy of design for systems' balancing devices. Recommend changes and additions to systems' balancing devices to facilitate proper performance measuring and balancing. Recommend changes and additions to HVAC systems and general construction to allow access for performance measuring and balancing devices.

3.9 FINAL REPORT

- A. General: Prepare a certified written report; tabulate and divide the report into separate sections for tested systems and balanced systems.
 - 1. Include a certification sheet at the front of the report's binder, signed and sealed by the certified testing and balancing engineer.
 - 2. Include a list of instruments used for procedures, along with proof of calibration.
- B. Final Report Contents: In addition to certified field-report data, include the following:
 - 1. Pump curves.
 - 2. Fan curves.
 - 3. Manufacturers' test data.
 - 4. Field test reports prepared by system and equipment installers.
 - 5. Other information relative to equipment performance; do not include Shop Drawings and product data.
- C. General Report Data: In addition to form titles and entries, include the following data:
 - 1. Title page.
 - 2. Name and address of the TAB contractor.
 - 3. Project name.
 - 4. Project location.
 - 5. Architect's name and address.
 - 6. Engineer's name and address.
 - 7. Contractor's name and address.
 - Report date.
 - 9. Signature of TAB supervisor who certifies the report.
 - 10. Table of Contents with the total number of pages defined for each section of the report. Number each page in the report.
 - 11. Summary of contents including the following:
 - a. Indicated versus final performance.
 - b. Notable characteristics of systems.

- c. Description of system operation sequence if it varies from the Contract Documents.
- 12. Nomenclature sheets for each item of equipment.
- 13. Data for terminal units, including manufacturer's name, type, size, and fittings.
- 14. Notes to explain why certain final data in the body of reports vary from indicated values.
- 15. Test conditions for fans and pump performance forms including the following:
 - a. Settings for outdoor-, return-, and exhaust-air dampers.
 - b. Conditions of filters.
 - c. Cooling coil, wet- and dry-bulb conditions.
 - d. Face and bypass damper settings at coils.
 - e. Fan drive settings including settings and percentage of maximum pitch diameter.
 - f. Inlet vane settings for variable-air-volume systems.
 - g. Settings for supply-air, static-pressure controller.
 - h. Other system operating conditions that affect performance.
- D. System Diagrams: Include schematic layouts of air and hydronic distribution systems. Present each system with single-line diagram and include the following:
 - 1. Quantities of outdoor, supply, return, and exhaust airflows.
 - 2. Water and steam flow rates.
 - 3. Duct, outlet, and inlet sizes.
 - 4. Pipe and valve sizes and locations.
 - 5. Terminal units.
 - 6. Balancing stations.
 - 7. Position of balancing devices.
- E. Air-Handling-Unit Test Reports: For air-handling units with coils, include the following:
 - 1. Unit Data:
 - a. Unit identification.
 - b. Location.
 - c. Make and type.
 - d. Model number and unit size.
 - e. Manufacturer's serial number.
 - f. Unit arrangement and class.
 - g. Discharge arrangement.
 - h. Sheave make, size in inches, and bore.
 - i. Center-to-center dimensions of sheave, and amount of adjustments in inches.
 - j. Number, make, and size of belts.
 - k. Number, type, and size of filters.
 - 2. Motor Data:
 - a. Motor make, and frame type and size.
 - b. Horsepower and rpm.
 - c. Volts, phase, and hertz.
 - d. Full-load amperage and service factor.
 - e. Sheave make, size in inches, and bore.
 - f. Center-to-center dimensions of sheave, and amount of adjustments in inches.
 - 3. Test Data (Indicated and Actual Values):

- a. Total air flow rate in cfm.
- b. Total system static pressure in inches wg.
- c. Fan rpm.
- d. Discharge static pressure in inches wg.
- e. Filter static-pressure differential in inches wg.
- f. Preheat-coil static-pressure differential in inches wg.
- g. Cooling-coil static-pressure differential in inches wg.
- h. Heating-coil static-pressure differential in inches wg.
- i. Outdoor airflow in cfm.
- j. Return airflow in cfm.
- k. Outdoor-air damper position.
- I. Return-air damper position.
- m. Vortex damper position.
- F. Fan Test Reports: For supply, return, and exhaust fans, include the following:
 - 1. Fan Data:
 - a. System identification.
 - b. Location.
 - c. Make and type.
 - d. Model number and size.
 - e. Manufacturer's serial number.
 - f. Arrangement and class.
 - g. Sheave make, size in inches, and bore.
 - h. Center-to-center dimensions of sheave, and amount of adjustments in inches.
 - Motor Data:
 - a. Motor make, and frame type and size.
 - b. Horsepower and rpm.
 - c. Volts, phase, and hertz.
 - d. Full-load amperage and service factor.
 - e. Sheave make, size in inches, and bore.
 - f. Center-to-center dimensions of sheave, and amount of adjustments in inches.
 - g. Number, make, and size of belts.
 - 3. Test Data (Indicated and Actual Values):
 - a. Total airflow rate in cfm.
 - b. Total system static pressure in inches wg.
 - c. Fan rpm.
 - d. Discharge static pressure in inches wg.
 - e. Suction static pressure in inches wg.
- G. Round, Flat-Oval, and Rectangular Duct Traverse Reports: Include a diagram with a grid representing the duct cross-section and record the following:
 - 1. Report Data:
 - a. System and air-handling-unit number.
 - b. Location and zone.
 - c. Traverse air temperature in deg F.
 - d. Duct static pressure in inches wg.

- e. Duct size in inches.
- f. Duct area in sq. ft..
- g. Indicated air flow rate in cfm.
- h. Indicated velocity in fpm.
- i. Actual air flow rate in cfm.
- j. Actual average velocity in fpm.
- k. Barometric pressure in psig.

H. Instrument Calibration Reports:

1. Report Data:

- a. Instrument type and make.
- b. Serial number.
- c. Application.
- d. Dates of use.
- e. Dates of calibration.

3.10 INSPECTIONS

A. Initial Inspection:

- 1. After testing and balancing are complete, operate each system and randomly check measurements to verify that the system is operating according to the final test and balance readings documented in the final report.
- 2. Check the following for each system:
 - a. Measure airflow of at least 10 percent of air outlets.
 - b. Measure water flow of at least 5 percent of terminals.
 - c. Measure room temperature at each thermostat/temperature sensor. Compare the reading to the set point.
 - d. Verify that balancing devices are marked with final balance position.
 - e. Note deviations from the Contract Documents in the final report.

B. Final Inspection:

- 1. After initial inspection is complete and documentation by random checks verifies that testing and balancing are complete and accurately documented in the final report, request that a final inspection be made by Architect.
- 2. The TAB contractor's test and balance engineer shall conduct the inspection in the presence of Architect.
- Architect shall randomly select measurements, documented in the final report, to be rechecked. Rechecking shall be limited to either 10 percent of the total measurements recorded or the extent of measurements that can be accomplished in a normal 8-hour business day.
- 4. If rechecks yield measurements that differ from the measurements documented in the final report by more than the tolerances allowed, the measurements shall be noted as "FAILED."
- 5. If the number of "FAILED" measurements is greater than 10 percent of the total measurements checked during the final inspection, the testing and balancing shall be considered incomplete and shall be rejected.

- C. TAB Work will be considered defective if it does not pass final inspections. If TAB Work fails, proceed as follows:
 - 1. Recheck all measurements and make adjustments. Revise the final report and balancing device settings to include all changes; resubmit the final report and request a second final inspection.
 - 2. If the second final inspection also fails, Owner may contract the services of another TAB contractor to complete TAB Work according to the Contract Documents and deduct the cost of the services from the original TAB contractor's final payment.
- D. Prepare test and inspection reports.

END OF SECTION 23 05 93

SECTION 23 07 13 - DUCT INSULATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions, Division 00 Information for Bidders, and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes insulating the following duct services:
 - 1. Indoor, exposed supply and outdoor air.
- B. Related Sections:
 - 1. Division 23 Section "HVAC Piping Insulation."
 - Division 23 Section "Metal Ducts" for duct liners.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated. Include thermal conductivity, water-vapor permeance thickness, and jackets (both factory- and field-applied if any).

1.4 QUALITY ASSURANCE

- A. Surface-Burning Characteristics: For insulation and related materials, as determined by testing identical products according to ASTM E 84, by a testing agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, tapes, and cement material containers, with appropriate markings of applicable testing agency.
 - 1. Insulation Installed Indoors: Flame-spread index of 25 or less, and smoke-developed index of 50 or less.
 - 2. Insulation Installed Outdoors: Flame-spread index of 75 or less, and smoke-developed index of 150 or less.

1.5 DELIVERY, STORAGE, AND HANDLING

A. Packaging: Insulation material containers shall be marked by manufacturer with appropriate ASTM standard designation, type and grade, and maximum use temperature.

1.6 COORDINATION

- A. Coordinate sizes and locations of supports, hangers, and insulation shields specified in Division 23 Section "Hangers and Supports for HVAC Piping and Equipment."
- B. Coordinate clearance requirements with duct Installer for duct insulation application. Before preparing ductwork Shop Drawings, establish and maintain clearance requirements for installation of insulation and field-applied jackets and finishes and for space required for maintenance.
- C. Coordinate installation and testing of heat tracing.

1.7 SCHEDULING

- A. Schedule insulation application after pressure testing systems and, where required, after installing and testing heat tracing. Insulation application may begin on segments that have satisfactory test results.
- B. Complete installation and concealment of plastic materials as rapidly as possible in each area of construction.

PART 2 - PRODUCTS

2.1 INSULATION MATERIALS

- A. Comply with requirements in "Duct Insulation Schedule, General," "Indoor Duct and Plenum Insulation Schedule," and "Aboveground, Outdoor Duct and Plenum Insulation Schedule" articles for where insulating materials shall be applied.
- B. Products shall not contain asbestos, lead, mercury, or mercury compounds.
- C. Products that come in contact with stainless steel shall have a leachable chloride content of less than 50 ppm when tested according to ASTM C 871.
- D. Insulation materials for use on austenitic stainless steel shall be qualified as acceptable according to ASTM C 795.
- E. Foam insulation materials shall not use CFC or HCFC blowing agents in the manufacturing process.
- F. Mineral-Fiber Blanket Insulation: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 553, Type II and ASTM C 1290, Type III with factory-applied FSK jacket. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. CertainTeed Corp.; SoftTouch Duct Wrap.
 - b. Johns Manville: Microlite.
 - c. Knauf Insulation; Friendly Feel Duct Wrap.
 - d. Manson Insulation Inc.; Alley Wrap.
 - e. Owens Corning; SOFTR All-Service Duct Wrap.

- G. Mineral-Fiber Board Insulation: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 612, Type IA or Type IB. For duct and plenum applications, provide insulation with factory-applied ASJ. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. CertainTeed Corp.; Commercial Board.
 - b. Fibrex Insulations Inc.; FBX.
 - c. Johns Manville; 800 Series Spin-Glas.
 - d. Knauf Insulation: Insulation Board.
 - e. Manson Insulation Inc.; AK Board.
 - f. Owens Corning; Fiberglas 700 Series.

2.2 ADHESIVES

- A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated unless otherwise indicated.
- B. Mineral-Fiber Adhesive: Comply with MIL-A-3316C, Class 2, Grade A.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; CP-127.
 - b. Eagle Bridges Marathon Industries; 225.
 - c. Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 85-60/85-70.
 - d. Mon-Eco Industries, Inc.; 22-25.
 - 2. For indoor applications, adhesive shall have a VOC content of 80 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 - 3. Adhesive shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."
- C. ASJ Adhesive, and FSK Jacket Adhesive: Comply with MIL-A-3316C, Class 2, Grade A for bonding insulation jacket lap seams and joints.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; CP-82.
 - b. Eagle Bridges Marathon Industries; 225.
 - c. Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company: 85-50.
 - d. Mon-Eco Industries, Inc.; 22-25.
 - 2. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 - 3. Adhesive shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

2.3 MASTICS

- A. Materials shall be compatible with insulation materials, jackets, and substrates; comply with MIL-PRF-19565C, Type II.
 - 1. For indoor applications, use mastics that have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- B. Vapor-Barrier Mastic: Water based; suitable for indoor use on below ambient services.
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 30-80/30-90.
 - b. Vimasco Corporation; 749.
 - 2. Water-Vapor Permeance: ASTM E 96/E 96M, Procedure B, 0.013 perm at 43-mil dry film thickness.
 - 3. Service Temperature Range: Minus 20 to plus 180 deg F.
 - 4. Solids Content: ASTM D 1644, 58 percent by volume and 70 percent by weight.
 - 5. Color: White.
- C. Vapor-Barrier Mastic: Solvent based; suitable for indoor use on below ambient services.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; CP-30.
 - b. Eagle Bridges Marathon Industries; 501.
 - c. Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 30-35.
 - d. Mon-Eco Industries, Inc.; 55-10.
 - 2. Water-Vapor Permeance: ASTM F 1249, 0.05 perm at 35-mil dry film thickness.
 - 3. Service Temperature Range: 0 to 180 deg F.
 - 4. Solids Content: ASTM D 1644, 44 percent by volume and 62 percent by weight.
 - Color: White.
- D. Vapor-Barrier Mastic: Solvent based; suitable for outdoor use on below ambient services.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; Encacel.
 - b. Eagle Bridges Marathon Industries; 570.
 - c. Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 60-95/60-96.
 - 2. Water-Vapor Permeance: ASTM F 1249, 0.05 perm at 30-mil dry film thickness.
 - 3. Service Temperature Range: Minus 50 to plus 220 deg F.
 - 4. Solids Content: ASTM D 1644, 33 percent by volume and 46 percent by weight.
 - 5. Color: White.

- E. Breather Mastic: Water based; suitable for indoor and outdoor use on above ambient services.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; CP-10.
 - b. Eagle Bridges Marathon Industries; 550.
 - c. Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 46-50.
 - d. Mon-Eco Industries, Inc.; 55-50.
 - e. Vimasco Corporation; WC-1/WC-5.
 - 2. Water-Vapor Permeance: ASTM F 1249, 1.8 perms at 0.0625-inch dry film thickness.
 - 3. Service Temperature Range: Minus 20 to plus 180 deg F.
 - 4. Solids Content: 60 percent by volume and 66 percent by weight.
 - 5. Color: White.

2.4 SEALANTS

- A. FSK and Metal Jacket Flashing Sealants:
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; CP-76.
 - b. Eagle Bridges Marathon Industries; 405.
 - c. Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 95-44.
 - d. Mon-Eco Industries, Inc.; 44-05.
 - 2. Materials shall be compatible with insulation materials, jackets, and substrates.
 - 3. Fire- and water-resistant, flexible, elastomeric sealant.
 - 4. Service Temperature Range: Minus 40 to plus 250 deg F.
 - 5. Color: Aluminum.
 - 6. For indoor applications, sealants shall have a VOC content of 420 g/L or less when calculated according to 40 CFR 59. Subpart D (EPA Method 24).
 - 7. Sealants shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."
- B. ASJ Flashing Sealants, and Vinyl and PVC Jacket Flashing Sealants:
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; CP-76.
 - 2. Materials shall be compatible with insulation materials, jackets, and substrates.
 - 3. Fire- and water-resistant, flexible, elastomeric sealant.
 - 4. Service Temperature Range: Minus 40 to plus 250 deg F.
 - 5. Color: White.

- 6. For indoor applications, sealants shall have a VOC content of 420 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- 7. Sealants shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

2.5 FACTORY-APPLIED JACKETS

- A. Insulation system schedules indicate factory-applied jackets on various applications. When factory-applied jackets are indicated, comply with the following:
 - 1. ASJ: White, kraft-paper, fiberglass-reinforced scrim with aluminum-foil backing; complying with ASTM C 1136, Type I.
 - 2. ASJ-SSL: ASJ with self-sealing, pressure-sensitive, acrylic-based adhesive covered by a removable protective strip; complying with ASTM C 1136, Type I.
 - 3. FSK Jacket: Aluminum-foil, fiberglass-reinforced scrim with kraft-paper backing; complying with ASTM C 1136, Type II.
 - 4. FSP Jacket: Aluminum-foil, fiberglass-reinforced scrim with polyethylene backing; complying with ASTM C 1136, Type II.
 - 5. Vinyl Jacket: White vinyl with a permeance of 1.3 perms when tested according to ASTM E 96/E 96M, Procedure A, and complying with NFPA 90A and NFPA 90B.

2.6 TAPES

- A. ASJ Tape: White vapor-retarder tape matching factory-applied jacket with acrylic adhesive, complying with ASTM C 1136.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. ABI, Ideal Tape Division; 428 AWF ASJ.
 - b. Avery Dennison Corporation, Specialty Tapes Division; Fasson 0836.
 - c. Compac Corporation; 104 and 105.
 - d. Venture Tape; 1540 CW Plus, 1542 CW Plus, and 1542 CW Plus/SQ.
 - 2. Width: 3 inches.
 - 3. Thickness: 11.5 mils.
 - 4. Adhesion: 90 ounces force/inch in width.
 - 5. Elongation: 2 percent.
 - 6. Tensile Strength: 40 lbf/inch in width.
 - 7. ASJ Tape Disks and Squares: Precut disks or squares of ASJ tape.
- B. FSK Tape: Foil-face, vapor-retarder tape matching factory-applied jacket with acrylic adhesive; complying with ASTM C 1136.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. ABI, Ideal Tape Division; 491 AWF FSK.
 - b. Avery Dennison Corporation, Specialty Tapes Division; Fasson 0827.
 - c. Compac Corporation; 110 and 111.
 - d. Venture Tape; 1525 CW NT, 1528 CW, and 1528 CW/SQ.
 - 2. Width: 3 inches.

- 3. Thickness: 6.5 mils.
- 4. Adhesion: 90 ounces force/inch in width.
- 5. Elongation: 2 percent.
- 6. Tensile Strength: 40 lbf/inch in width.
- 7. FSK Tape Disks and Squares: Precut disks or squares of FSK tape.
- C. Aluminum-Foil Tape: Vapor-retarder tape with acrylic adhesive.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. ABI, Ideal Tape Division; 488 AWF.
 - b. Avery Dennison Corporation, Specialty Tapes Division; Fasson 0800.
 - c. Compac Corporation; 120.
 - d. Venture Tape; 3520 CW.
 - 2. Width: 2 inches.
 - 3. Thickness: 3.7 mils.
 - 4. Adhesion: 100 ounces force/inch in width.
 - 5. Elongation: 5 percent.
 - 6. Tensile Strength: 34 lbf/inch in width.

2.7 SECUREMENTS

A. Bands:

- 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. ITW Insulation Systems; Gerrard Strapping and Seals.
 - b. RPR Products, Inc.; Insul-Mate Strapping, Seals, and Springs.
- 2. Stainless Steel: ASTM A 167 or ASTM A 240/A 240M, Type 304 or Type 316; 0.015 inch thick. 1/2 inch wide with wing seal or closed seal.
- 3. Aluminum: ASTM B 209, Alloy 3003, 3005, 3105, or 5005; Temper H-14, 0.020 inch thick, 1/2 inch wide with wing seal or closed seal.
- 4. Springs: Twin spring set constructed of stainless steel with ends flat and slotted to accept metal bands. Spring size determined by manufacturer for application.
- B. Insulation Pins and Hangers:
 - Capacitor-Discharge-Weld Pins: Copper- or zinc-coated steel pin, fully annealed for capacitor-discharge welding, 0.106-inch- diameter shank, length to suit depth of insulation indicated.
 - a. Products: Subject to compliance with requirements, provide one of the following:
 - 1) AGM Industries, Inc.; CWP-1.
 - 2) GEMCO; CD.
 - 3) Midwest Fasteners, Inc.; CD.
 - 4) Nelson Stud Welding; TPA, TPC, and TPS.

- 2. Cupped-Head, Capacitor-Discharge-Weld Pins: Copper- or zinc-coated steel pin, fully annealed for capacitor-discharge welding, 0.106-inch- diameter shank, length to suit depth of insulation indicated with integral 1-1/2-inch galvanized carbon-steel washer.
 - a. Products: Subject to compliance with requirements, provide one of the following:
 - 1) AGM Industries, Inc.; CHP-1.
 - 2) GEMCO; Cupped Head Weld Pin.
 - 3) Midwest Fasteners, Inc.; Cupped Head.
 - 4) Nelson Stud Welding; CHP.
- 3. Metal, Adhesively Attached, Perforated-Base Insulation Hangers: Baseplate welded to projecting spindle that is capable of holding insulation, of thickness indicated, securely in position indicated when self-locking washer is in place. Comply with the following requirements:
 - a. Products: Subject to compliance with requirements, provide one of the following:
 - 1) AGM Industries, Inc.; Tactoo Perforated Base Insul-Hangers.
 - 2) GEMCO: Perforated Base.
 - 3) Midwest Fasteners, Inc.; Spindle.
 - b. Baseplate: Perforated, galvanized carbon-steel sheet, 0.030 inch thick by 2 inches square.
 - c. Spindle: Copper- or zinc-coated, low-carbon steel, fully annealed, 0.106-inch-diameter shank, length to suit depth of insulation indicated.
 - d. Adhesive: Recommended by hanger manufacturer. Product with demonstrated capability to bond insulation hanger securely to substrates indicated without damaging insulation, hangers, and substrates.
- 4. Nonmetal, Adhesively Attached, Perforated-Base Insulation Hangers: Baseplate fastened to projecting spindle that is capable of holding insulation, of thickness indicated, securely in position indicated when self-locking washer is in place. Comply with the following requirements:
 - a. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - 1) GEMCO; Nylon Hangers.
 - 2) Midwest Fasteners, Inc.; Nylon Insulation Hangers.
 - b. Baseplate: Perforated, nylon sheet, 0.030 inch thick by 1-1/2 inches in diameter.
 - c. Spindle: Nylon, 0.106-inch- diameter shank, length to suit depth of insulation indicated, up to 2-1/2 inches.
 - d. Adhesive: Recommended by hanger manufacturer. Product with demonstrated capability to bond insulation hanger securely to substrates indicated without damaging insulation, hangers, and substrates.
- 5. Self-Sticking-Base Insulation Hangers: Baseplate welded to projecting spindle that is capable of holding insulation, of thickness indicated, securely in position indicated when self-locking washer is in place. Comply with the following requirements:
 - a. Products: Subject to compliance with requirements, provide one of the following:

- 1) AGM Industries, Inc.; Tactoo Self-Adhering Insul-Hangers.
- 2) GEMCO; Peel & Press.
- 3) Midwest Fasteners, Inc.; Self Stick.
- b. Baseplate: Galvanized carbon-steel sheet, 0.030 inch thick by 2 inches square.
- c. Spindle: Copper- or zinc-coated, low-carbon steel, fully annealed, 0.106-inch-diameter shank, length to suit depth of insulation indicated.
- d. Adhesive-backed base with a peel-off protective cover.
- 6. Insulation-Retaining Washers: Self-locking washers formed from 0.016-inch- thick, galvanized-steel sheet, with beveled edge sized as required to hold insulation securely in place but not less than 1-1/2 inches in diameter.
 - a. Products: Subject to compliance with requirements, provide one of the following:
 - 1) AGM Industries, Inc.; RC-150.
 - 2) GEMCO; R-150.
 - 3) Midwest Fasteners, Inc.; WA-150.
 - 4) Nelson Stud Welding; Speed Clips.
 - b. Protect ends with capped self-locking washers incorporating a spring steel insert to ensure permanent retention of cap in exposed locations.
- 7. Nonmetal Insulation-Retaining Washers: Self-locking washers formed from 0.016-inch-thick nylon sheet, with beveled edge sized as required to hold insulation securely in place but not less than 1-1/2 inches in diameter.
 - a. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1) GEMCO.
 - 2) Midwest Fasteners, Inc.
- C. Staples: Outward-clinching insulation staples, nominal 3/4-inch- wide, stainless steel or Monel.

2.8 CORNER ANGLES

- A. PVC Corner Angles: 30 mils thick, minimum 1 by 1 inch, PVC according to ASTM D 1784, Class 16354-C. White or color-coded to match adjacent surface.
- B. Aluminum Corner Angles: 0.040 inch thick, minimum 1 by 1 inch, aluminum according to ASTM B 209, Alloy 3003, 3005, 3105, or 5005; Temper H-14.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates and conditions for compliance with requirements for installation tolerances and other conditions affecting performance of insulation application.

- 1. Verify that systems to be insulated have been tested and are free of defects.
- 2. Verify that surfaces to be insulated are clean and dry.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.

3.3 GENERAL INSTALLATION REQUIREMENTS

- A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of ducts and fittings.
- B. Install insulation materials, vapor barriers or retarders, jackets, and thicknesses required for each item of duct system as specified in insulation system schedules.
- C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.
- D. Install insulation with longitudinal seams at top and bottom of horizontal runs.
- E. Install multiple layers of insulation with longitudinal and end seams staggered.
- F. Keep insulation materials dry during application and finishing.
- G. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.
- H. Install insulation with least number of joints practical.
- I. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.
 - 1. Install insulation continuously through hangers and around anchor attachments.
 - 2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends at attachment to structure with vapor-barrier mastic.
 - 3. Install insert materials and install insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer.
- J. Apply adhesives, mastics, and sealants at manufacturer's recommended coverage rate and wet and dry film thicknesses.
- K. Install insulation with factory-applied jackets as follows:
 - 1. Draw jacket tight and smooth.

- 2. Cover circumferential joints with 3-inch- wide strips, of same material as insulation jacket. Secure strips with adhesive and outward clinching staples along both edges of strip, spaced 4 inches o.c.
- 3. Overlap jacket longitudinal seams at least 1-1/2 inches. Clean and dry surface to receive self-sealing lap. Staple laps with outward clinching staples along edge at 2 inches o.c.
 - a. For below ambient services, apply vapor-barrier mastic over staples.
- 4. Cover joints and seams with tape, according to insulation material manufacturer's written instructions, to maintain vapor seal.
- 5. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints and at ends adjacent to duct flanges and fittings.
- L. Cut insulation in a manner to avoid compressing insulation more than 75 percent of its nominal thickness.
- M. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.
- N. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches beyond damaged areas. Adhere, staple, and seal patches similar to butt joints.

3.4 PENETRATIONS

- A. Insulation Installation at Roof Penetrations: Install insulation continuously through roof penetrations.
 - 1. Seal penetrations with flashing sealant.
 - 2. For applications requiring only indoor insulation, terminate insulation above roof surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 - 3. Extend jacket of outdoor insulation outside roof flashing at least 2 inches below top of roof flashing.
 - 4. Seal jacket to roof flashing with flashing sealant.
- B. Insulation Installation at Aboveground Exterior Wall Penetrations: Install insulation continuously through wall penetrations.
 - 1. Seal penetrations with flashing sealant.
 - 2. For applications requiring only indoor insulation, terminate insulation inside wall surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 - 3. Extend jacket of outdoor insulation outside wall flashing and overlap wall flashing at least 2 inches.
 - 4. Seal jacket to wall flashing with flashing sealant.
- C. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated): Install insulation continuously through walls and partitions.

- D. Insulation Installation at Fire-Rated Wall and Partition Penetrations: Terminate insulation at fire damper sleeves for fire-rated wall and partition penetrations. Externally insulate damper sleeves to match adjacent insulation and overlap duct insulation at least 2 inches.
- E. Insulation Installation at Floor Penetrations:
 - 1. Duct: For penetrations through fire-rated assemblies, terminate insulation at fire damper sleeves and externally insulate damper sleeve beyond floor to match adjacent duct insulation. Overlap damper sleeve and duct insulation at least 2 inches.
 - 2. Seal penetrations through fire-rated assemblies.

3.5 INSTALLATION OF MINERAL-FIBER INSULATION

- A. Blanket Insulation Installation on Ducts and Plenums: Secure with adhesive and insulation pins.
 - 1. Apply adhesives according to manufacturer's recommended coverage rates per unit area, for 100 percent coverage of duct and plenum surfaces.
 - 2. Apply adhesive to entire circumference of ducts and to all surfaces of fittings and transitions.
 - Install either capacitor-discharge-weld pins and speed washers or cupped-head, capacitor-discharge-weld pins on sides and bottom of horizontal ducts and sides of vertical ducts as follows:
 - a. On duct sides with dimensions 18 inches and smaller, place pins along longitudinal centerline of duct. Space 3 inches maximum from insulation end joints, and 16 inches o.c.
 - b. On duct sides with dimensions larger than 18 inches, place pins 16 inches o.c. each way, and 3 inches maximum from insulation joints. Install additional pins to hold insulation tightly against surface at cross bracing.
 - c. Pins may be omitted from top surface of horizontal, rectangular ducts and plenums.
 - d. Do not overcompress insulation during installation.
 - e. Impale insulation over pins and attach speed washers.
 - f. Cut excess portion of pins extending beyond speed washers or bend parallel with insulation surface. Cover exposed pins and washers with tape matching insulation facing.
 - 4. For ducts and plenums with surface temperatures below ambient, install a continuous unbroken vapor barrier. Create a facing lap for longitudinal seams and end joints with insulation by removing 2 inches from one edge and one end of insulation segment. Secure laps to adjacent insulation section with 1/2-inch outward-clinching staples, 1 inch o.c. Install vapor barrier consisting of factory- or field-applied jacket, adhesive, vapor-barrier mastic, and sealant at joints, seams, and protrusions.
 - Repair punctures, tears, and penetrations with tape or mastic to maintain vaporbarrier seal.
 - b. Install vapor stops for ductwork and plenums operating below 50 deg F at 18-foot intervals. Vapor stops shall consist of vapor-barrier mastic applied in a Z-shaped pattern over insulation face, along butt end of insulation, and over the surface. Cover insulation face and surface to be insulated a width equal to two times the insulation thickness, but not less than 3 inches.

- 5. Overlap unfaced blankets a minimum of 2 inches on longitudinal seams and end joints. At end joints, secure with steel bands spaced a maximum of 18 inches o.c.
- 6. Install insulation on rectangular duct elbows and transitions with a full insulation section for each surface. Install insulation on round and flat-oval duct elbows with individually mitered gores cut to fit the elbow.
- 7. Insulate duct stiffeners, hangers, and flanges that protrude beyond insulation surface with 6-inch- wide strips of same material used to insulate duct. Secure on alternating sides of stiffener, hanger, and flange with pins spaced 6 inches o.c.
- B. Board Insulation Installation on Ducts and Plenums: Secure with adhesive and insulation pins.
 - 1. Apply adhesives according to manufacturer's recommended coverage rates per unit area, for 100 percent coverage of duct and plenum surfaces.
 - 2. Apply adhesive to entire circumference of ducts and to all surfaces of fittings and transitions.
 - 3. Install either capacitor-discharge-weld pins and speed washers or cupped-head, capacitor-discharge-weld pins on sides and bottom of horizontal ducts and sides of vertical ducts as follows:
 - On duct sides with dimensions 18 inches and smaller, place pins along longitudinal centerline of duct. Space 3 inches maximum from insulation end joints, and 16 inches o.c.
 - b. On duct sides with dimensions larger than 18 inches, space pins 16 inches o.c. each way, and 3 inches maximum from insulation joints. Install additional pins to hold insulation tightly against surface at cross bracing.
 - c. Pins may be omitted from top surface of horizontal, rectangular ducts and plenums.
 - d. Do not overcompress insulation during installation.
 - e. Cut excess portion of pins extending beyond speed washers or bend parallel with insulation surface. Cover exposed pins and washers with tape matching insulation facing.
 - 4. For ducts and plenums with surface temperatures below ambient, install a continuous unbroken vapor barrier. Create a facing lap for longitudinal seams and end joints with insulation by removing 2 inches from one edge and one end of insulation segment. Secure laps to adjacent insulation section with 1/2-inch outward-clinching staples, 1 inch o.c. Install vapor barrier consisting of factory- or field-applied jacket, adhesive, vapor-barrier mastic, and sealant at joints, seams, and protrusions.
 - Repair punctures, tears, and penetrations with tape or mastic to maintain vaporbarrier seal.
 - b. Install vapor stops for ductwork and plenums operating below 50 deg F at 18-foot intervals. Vapor stops shall consist of vapor-barrier mastic applied in a Z-shaped pattern over insulation face, along butt end of insulation, and over the surface. Cover insulation face and surface to be insulated a width equal to two times the insulation thickness, but not less than 3 inches.
 - 5. Install insulation on rectangular duct elbows and transitions with a full insulation section for each surface. Groove and score insulation to fit as closely as possible to outside and inside radius of elbows. Install insulation on round and flat-oval duct elbows with individually mitered gores cut to fit the elbow.
 - 6. Insulate duct stiffeners, hangers, and flanges that protrude beyond insulation surface with 6-inch- wide strips of same material used to insulate duct. Secure on alternating sides of stiffener, hanger, and flange with pins spaced 6 inches o.c.

3.6 FIELD QUALITY CONTROL

- A. Tests and Inspections:
 - Inspect ductwork, randomly selected by Architect, by removing field-applied jacket and insulation in layers in reverse order of their installation. Extent of inspection shall be limited to one location(s) for each duct system defined in the "Duct Insulation Schedule, General" Article.
- B. All insulation applications will be considered defective Work if sample inspection reveals noncompliance with requirements.

3.7 DUCT INSULATION SCHEDULE, GENERAL

- A. Plenums and Ducts Requiring Insulation:
 - 1. Indoor, exposed supply and outdoor air.
- B. Items Not Insulated:
 - 1. Fibrous-glass ducts.
 - 2. Metal ducts with duct liner of sufficient thickness to comply with energy code and ASHRAE/IESNA 90.1.
 - 3. Factory-insulated flexible ducts.
 - 4. Factory-insulated plenums and casings.
 - 5. Flexible connectors.
 - 6. Vibration-control devices.
 - 7. Factory-insulated access panels and doors.

3.8 INDOOR DUCT AND PLENUM INSULATION SCHEDULE

- A. Exposed, rectangular, outdoor-air duct insulation shall be the following:
 - 1. Mineral-Fiber Board: 1-1/2 inches thick and 2-lb/cu. ft. nominal density.

END OF SECTION 23 07 13

SECTION 23 07 19 - HVAC PIPING INSULATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions, Division 00 Information for Bidders, and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes insulating the following HVAC piping systems:
 - 1. Low pressure steam and steam condensate, indoors.
- B. Related Sections:
 - Division 23 Section "Duct Insulation."

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated. Include thermal conductivity, water-vapor permeance thickness, and jackets (both factory and field applied if any).

1.4 QUALITY ASSURANCE

- A. Surface-Burning Characteristics: For insulation and related materials, as determined by testing identical products according to ASTM E 84, by a testing and inspecting agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, tapes, and cement material containers, with appropriate markings of applicable testing agency.
 - 1. Insulation Installed Indoors: Flame-spread index of 25 or less, and smoke-developed index of 50 or less.
 - 2. Insulation Installed Outdoors: Flame-spread index of 75 or less, and smoke-developed index of 150 or less.

1.5 DELIVERY, STORAGE, AND HANDLING

A. Packaging: Insulation material containers shall be marked by manufacturer with appropriate ASTM standard designation, type and grade, and maximum use temperature.

1.6 COORDINATION

- A. Coordinate sizes and locations of supports, hangers, and insulation shields specified in Division 23 Section "Hangers and Supports for HVAC Piping and Equipment."
- B. Coordinate clearance requirements with piping Installer for piping insulation application. Before preparing piping Shop Drawings, establish and maintain clearance requirements for installation of insulation and field-applied jackets and finishes and for space required for maintenance.
- C. Coordinate installation and testing of heat tracing.

1.7 SCHEDULING

- A. Schedule insulation application after pressure testing systems and, where required, after installing and testing heat tracing. Insulation application may begin on segments that have satisfactory test results.
- B. Complete installation and concealment of plastic materials as rapidly as possible in each area of construction.

PART 2 - PRODUCTS

2.1 INSULATION MATERIALS

- A. Comply with requirements in "Piping Insulation Schedule, General," "Indoor Piping Insulation Schedule," "Outdoor, Aboveground Piping Insulation Schedule," and "Outdoor, Underground Piping Insulation Schedule" articles for where insulating materials shall be applied.
- B. Products shall not contain asbestos, lead, mercury, or mercury compounds.
- C. Products that come in contact with stainless steel shall have a leachable chloride content of less than 50 ppm when tested according to ASTM C 871.
- D. Insulation materials for use on austenitic stainless steel shall be qualified as acceptable according to ASTM C 795.
- E. Foam insulation materials shall not use CFC or HCFC blowing agents in the manufacturing process.
- F. Mineral-Fiber, Preformed Pipe Insulation:
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Fibrex Insulations Inc.; Coreplus 1200.
 - b. Johns Manville; Micro-Lok.
 - c. Knauf Insulation; 1000-Degree Pipe Insulation.
 - d. Manson Insulation Inc.; Alley-K.
 - e. Owens Corning; Fiberglas Pipe Insulation.

- 2. Type I, 850 deg F Materials: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 547, Type I, Grade A, with factory-applied ASJ. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
- 3. Type II, 1200 deg F Materials: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 547, Type II, Grade A, with factory-applied ASJ. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
- G. Mineral-Fiber, Pipe Insulation Wicking System: Preformed pipe insulation complying with ASTM C 547, Type I, Grade A, with absorbent cloth factory-applied to the entire inside surface of preformed pipe insulation and extended through the longitudinal joint to outside surface of insulation under insulation jacket. Factory apply a white, polymer, vapor-retarder jacket with self-sealing adhesive tape seam and evaporation holes running continuously along the longitudinal seam, exposing the absorbent cloth.
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Knauf Insulation; Permawick Pipe Insulation.
 - b. Owens Corning; VaporWick Pipe Insulation.
- H. Mineral-Fiber, Pipe and Tank Insulation: Mineral or glass fibers bonded with a thermosetting resin. Semirigid board material with factory-applied FSK jacket complying with ASTM C 1393, Type II or Type IIIA Category 2, or with properties similar to ASTM C 612, Type IB. Nominal density is 2.5 lb/cu. ft. or more. Thermal conductivity (k-value) at 100 deg F is 0.29 Btu x in./h x sq. ft. x deg F or less. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. CertainTeed Corp.; CrimpWrap.
 - b. Johns Manville; MicroFlex.
 - c. Knauf Insulation; Pipe and Tank Insulation.
 - d. Manson Insulation Inc.; AK Flex.
 - e. Owens Corning; Fiberglas Pipe and Tank Insulation.

2.2 INSULATING CEMENTS

- A. Mineral-Fiber Insulating Cement: Comply with ASTM C 195.
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Ramco Insulation, Inc.; Super-Stik.
- B. Expanded or Exfoliated Vermiculite Insulating Cement: Comply with ASTM C 196.
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Ramco Insulation, Inc.; Thermokote V.
- C. Mineral-Fiber, Hydraulic-Setting Insulating and Finishing Cement: Comply with ASTM C 449.

- 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Ramco Insulation, Inc.; Ramcote 1200 and Quik-Cote.

2.3 ADHESIVES

- A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated unless otherwise indicated.
- B. Mineral-Fiber Adhesive: Comply with MIL-A-3316C, Class 2, Grade A.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; CP-127.
 - b. Eagle Bridges Marathon Industries; 225.
 - c. Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company, 85-60/85-70.
 - d. Mon-Eco Industries, Inc.; 22-25.
 - 2. For indoor applications, adhesive shall have a VOC content of 80 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 - 3. Adhesive shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."
- C. ASJ Adhesive, and PVDC Jacket Adhesive: Comply with MIL-A-3316C, Class 2, Grade A for bonding insulation jacket lap seams and joints.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; CP-82.
 - b. Eagle Bridges Marathon Industries; 225.
 - c. Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 85-50.
 - d. Mon-Eco Industries, Inc.; 22-25.
 - 2. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 - 3. Adhesive shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."
- D. PVC Jacket Adhesive: Compatible with PVC jacket.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Dow Corning Corporation; 739, Dow Silicone.
 - b. Johns Manville; Zeston Perma-Weld, CEEL-TITE Solvent Welding Adhesive.
 - c. P.I.C. Plastics, Inc.; Welding Adhesive.
 - d. Speedline Corporation; Polyco VP Adhesive.

- 2. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- 3. Adhesive shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

2.4 MASTICS

- A. Materials shall be compatible with insulation materials, jackets, and substrates; comply with MIL-PRF-19565C, Type II.
 - 1. For indoor applications, use mastics that have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- B. Vapor-Barrier Mastic: Water based; suitable for indoor use on below-ambient services.
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 30-80/30-90.
 - b. Vimasco Corporation; 749.
 - 2. Water-Vapor Permeance: ASTM E 96/E 96M, Procedure B, 0.013 perm at 43-mil dry film thickness.
 - 3. Service Temperature Range: Minus 20 to plus 180 deg F.
 - 4. Solids Content: ASTM D 1644, 58 percent by volume and 70 percent by weight.
 - 5. Color: White.
- C. Vapor-Barrier Mastic: Solvent based; suitable for indoor use on below-ambient services.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company: CP-30.
 - b. Eagle Bridges Marathon Industries; 501.
 - c. Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 30-35.
 - d. Mon-Eco Industries, Inc.; 55-10.
 - 2. Water-Vapor Permeance: ASTM F 1249, 0.05 perm at 35-mil dry film thickness.
 - 3. Service Temperature Range: 0 to 180 deg F.
 - 4. Solids Content: ASTM D 1644, 44 percent by volume and 62 percent by weight.
 - 5. Color: White.
- D. Vapor-Barrier Mastic: Solvent based; suitable for outdoor use on below-ambient services.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; Encacel.
 - b. Eagle Bridges Marathon Industries; 570.

- c. Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 60-95/60-96.
- 2. Water-Vapor Permeance: ASTM F 1249, 0.05 perm at 30-mil dry film thickness.
- 3. Service Temperature Range: Minus 50 to plus 220 deg F.
- 4. Solids Content: ASTM D 1644, 33 percent by volume and 46 percent by weight.
- 5. Color: White.
- E. Breather Mastic: Water based; suitable for indoor and outdoor use on above-ambient services.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; CP-10.
 - b. Eagle Bridges Marathon Industries; 550.
 - c. Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 46-50.
 - d. Mon-Eco Industries, Inc.; 55-50.
 - e. Vimasco Corporation; WC-1/WC-5.
 - 2. Water-Vapor Permeance: ASTM F 1249, 1.8 perms at 0.0625-inch dry film thickness.
 - 3. Service Temperature Range: Minus 20 to plus 180 deg F.
 - 4. Solids Content: 60 percent by volume and 66 percent by weight.
 - 5. Color: White.

2.5 LAGGING ADHESIVES

- A. Description: Comply with MIL-A-3316C, Class I, Grade A and shall be compatible with insulation materials, jackets, and substrates.
 - 1. For indoor applications, use lagging adhesives that have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 - 2. Products: Subject to compliance with requirements, provide one of the following:
 - a. Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; CP-50 AHV2.
 - b. Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 30-36.
 - c. Vimasco Corporation; 713 and 714.
 - 3. Fire-resistant, water-based lagging adhesive and coating for use indoors to adhere fire-resistant lagging cloths over pipe insulation.
 - 4. Service Temperature Range: 0 to plus 180 deg F.
 - 5. Color: White.

2.6 SEALANTS

- A. Joint Sealants:
 - 1. Joint Sealants for Cellular-Glass, Phenolic, and Polyisocyanurate Products: Subject to compliance with requirements, provide one of the following:

- a. Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company: CP-76.
- b. Eagle Bridges Marathon Industries; 405.
- c. Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 30-45.
- d. Mon-Eco Industries. Inc.: 44-05.
- e. Pittsburgh Corning Corporation; Pittseal 444.
- 2. Materials shall be compatible with insulation materials, jackets, and substrates.
- 3. Permanently flexible, elastomeric sealant.
- 4. Service Temperature Range: Minus 100 to plus 300 deg F.
- 5. Color: White or gray.
- 6. For indoor applications, sealants shall have a VOC content of 420 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- 7. Sealants shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."
- B. ASJ Flashing Sealants, and PVC Jacket Flashing Sealants:
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; CP-76.
 - 2. Materials shall be compatible with insulation materials, jackets, and substrates.
 - 3. Fire- and water-resistant, flexible, elastomeric sealant.
 - 4. Service Temperature Range: Minus 40 to plus 250 deg F.
 - 5. Color: White.
 - 6. For indoor applications, sealants shall have a VOC content of 420 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 - 7. Sealants shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

2.7 FACTORY-APPLIED JACKETS

- A. Insulation system schedules indicate factory-applied jackets on various applications. When factory-applied jackets are indicated, comply with the following:
 - 1. ASJ: White, kraft-paper, fiberglass-reinforced scrim with aluminum-foil backing; complying with ASTM C 1136, Type I.

2.8 FIELD-APPLIED JACKETS

- A. Field-applied jackets shall comply with ASTM C 921, Type I, unless otherwise indicated.
- B. PVC Jacket: High-impact-resistant, UV-resistant PVC complying with ASTM D 1784, Class 16354-C; thickness as scheduled; roll stock ready for shop or field cutting and forming. Thickness is indicated in field-applied jacket schedules.

- 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Johns Manville; Zeston.
 - b. P.I.C. Plastics, Inc.; FG Series.
 - c. Proto Corporation; LoSmoke.
 - d. Speedline Corporation; SmokeSafe.
- 2. Adhesive: As recommended by jacket material manufacturer.
- 3. Color: White.
- 4. Factory-fabricated fitting covers to match jacket if available; otherwise, field fabricate.
 - a. Shapes: 45- and 90-degree, short- and long-radius elbows, tees, valves, flanges, unions, reducers, end caps, soil-pipe hubs, traps, mechanical joints, and P-trap and supply covers for lavatories.

2.9 TAPES

- A. ASJ Tape: White vapor-retarder tape matching factory-applied jacket with acrylic adhesive, complying with ASTM C 1136.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. ABI, Ideal Tape Division; 428 AWF ASJ.
 - b. Avery Dennison Corporation, Specialty Tapes Division; Fasson 0836.
 - c. Compac Corporation; 104 and 105.
 - d. Venture Tape; 1540 CW Plus, 1542 CW Plus, and 1542 CW Plus/SQ.
 - 2. Width: 3 inches.
 - 3. Thickness: 11.5 mils.
 - 4. Adhesion: 90 ounces force/inch in width.
 - 5. Elongation: 2 percent.
 - 6. Tensile Strength: 40 lbf/inch in width.
 - 7. ASJ Tape Disks and Squares: Precut disks or squares of ASJ tape.
- B. PVC Tape: White vapor-retarder tape matching field-applied PVC jacket with acrylic adhesive; suitable for indoor and outdoor applications.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. ABI, Ideal Tape Division; 370 White PVC tape.
 - b. Compac Corporation; 130.
 - c. Venture Tape; 1506 CW NS.
 - 2. Width: 2 inches.
 - 3. Thickness: 6 mils.
 - 4. Adhesion: 64 ounces force/inch in width.
 - 5. Elongation: 500 percent.
 - 6. Tensile Strength: 18 lbf/inch in width.

2.10 SECUREMENTS

A. Bands:

- 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. ITW Insulation Systems; Gerrard Strapping and Seals.
 - b. RPR Products, Inc.; Insul-Mate Strapping, Seals, and Springs.
- 2. Stainless Steel: ASTM A 167 or ASTM A 240/A 240M, Type 304 or Type 316; 0.015 inch thick, 1/2 inch wide with wing seal or closed seal.
- 3. Springs: Twin spring set constructed of stainless steel with ends flat and slotted to accept metal bands. Spring size determined by manufacturer for application.
- B. Staples: Outward-clinching insulation staples, nominal 3/4-inch- wide, stainless steel or Monel.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates and conditions for compliance with requirements for installation tolerances and other conditions affecting performance of insulation application.
 - 1. Verify that systems to be insulated have been tested and are free of defects.
 - 2. Verify that surfaces to be insulated are clean and dry.
 - 3. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

- A. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.
- B. Coordinate insulation installation with the trade installing heat tracing. Comply with requirements for heat tracing that apply to insulation.
- C. Mix insulating cements with clean potable water; if insulating cements are to be in contact with stainless-steel surfaces, use demineralized water.

3.3 GENERAL INSTALLATION REQUIREMENTS

- A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of piping including fittings, valves, and specialties.
- B. Install insulation materials, forms, vapor barriers or retarders, jackets, and thicknesses required for each item of pipe system as specified in insulation system schedules.
- C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.
- D. Install insulation with longitudinal seams at top and bottom of horizontal runs.
- E. Install multiple layers of insulation with longitudinal and end seams staggered.

- F. Do not weld brackets, clips, or other attachment devices to piping, fittings, and specialties.
- G. Keep insulation materials dry during application and finishing.
- H. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.
- I. Install insulation with least number of joints practical.
- J. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.
 - 1. Install insulation continuously through hangers and around anchor attachments.
 - 2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends at attachment to structure with vapor-barrier mastic.
 - 3. Install insert materials and install insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer.
 - 4. Cover inserts with jacket material matching adjacent pipe insulation. Install shields over jacket, arranged to protect jacket from tear or puncture by hanger, support, and shield.
- K. Apply adhesives, mastics, and sealants at manufacturer's recommended coverage rate and wet and dry film thicknesses.
- L. Install insulation with factory-applied jackets as follows:
 - 1. Draw jacket tight and smooth.
 - 2. Cover circumferential joints with 3-inch- wide strips, of same material as insulation jacket. Secure strips with adhesive and outward clinching staples along both edges of strip, spaced 4 inches o.c.
 - 3. Overlap jacket longitudinal seams at least 1-1/2 inches. Install insulation with longitudinal seams at bottom of pipe. Clean and dry surface to receive self-sealing lap. Staple laps with outward clinching staples along edge at 4 inches o.c.
 - a. For below-ambient services, apply vapor-barrier mastic over staples.
 - 4. Cover joints and seams with tape, according to insulation material manufacturer's written instructions, to maintain vapor seal.
 - 5. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints and at ends adjacent to pipe flanges and fittings.
- M. Cut insulation in a manner to avoid compressing insulation more than 75 percent of its nominal thickness.
- N. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.
- O. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches beyond damaged areas. Adhere, staple, and seal patches similar to butt joints.
- P. For above-ambient services, do not install insulation to the following:

- Vibration-control devices.
- 2. Testing agency labels and stamps.
- 3. Nameplates and data plates.
- 4. Manholes.
- 5. Handholes.
- 6. Cleanouts.

3.4 PENETRATIONS

- A. Insulation Installation at Roof Penetrations: Install insulation continuously through roof penetrations.
 - 1. Seal penetrations with flashing sealant.
 - 2. For applications requiring only indoor insulation, terminate insulation above roof surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 - 3. Extend jacket of outdoor insulation outside roof flashing at least 2 inches below top of roof flashing.
 - 4. Seal jacket to roof flashing with flashing sealant.
- B. Insulation Installation at Underground Exterior Wall Penetrations: Terminate insulation flush with sleeve seal. Seal terminations with flashing sealant.
- C. Insulation Installation at Aboveground Exterior Wall Penetrations: Install insulation continuously through wall penetrations.
 - 1. Seal penetrations with flashing sealant.
 - 2. For applications requiring only indoor insulation, terminate insulation inside wall surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 - 3. Extend jacket of outdoor insulation outside wall flashing and overlap wall flashing at least 2 inches.
 - 4. Seal jacket to wall flashing with flashing sealant.
- D. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated): Install insulation continuously through walls and partitions.
- E. Insulation Installation at Fire-Rated Wall and Partition Penetrations: Install insulation continuously through penetrations of fire-rated walls and partitions.
 - 1. Comply with requirements in Division 07 Section "Penetration Firestopping" for firestopping and fire-resistive joint sealers.
- F. Insulation Installation at Floor Penetrations:
 - 1. Pipe: Install insulation continuously through floor penetrations.
 - 2. Seal penetrations through fire-rated assemblies. Comply with requirements in Division 07 Section "Penetration Firestopping."

3.5 GENERAL PIPE INSULATION INSTALLATION

- A. Requirements in this article generally apply to all insulation materials except where more specific requirements are specified in various pipe insulation material installation articles.
- B. Insulation Installation on Fittings, Valves, Strainers, Flanges, and Unions:
 - 1. Install insulation over fittings, valves, strainers, flanges, unions, and other specialties with continuous thermal and vapor-retarder integrity unless otherwise indicated.
 - 2. Insulate pipe elbows using preformed fitting insulation or mitered fittings made from same material and density as adjacent pipe insulation. Each piece shall be butted tightly against adjoining piece and bonded with adhesive. Fill joints, seams, voids, and irregular surfaces with insulating cement finished to a smooth, hard, and uniform contour that is uniform with adjoining pipe insulation.
 - 3. Insulate tee fittings with preformed fitting insulation or sectional pipe insulation of same material and thickness as used for adjacent pipe. Cut sectional pipe insulation to fit. Butt each section closely to the next and hold in place with tie wire. Bond pieces with adhesive.
 - 4. Insulate valves using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. For valves, insulate up to and including the bonnets, valve stuffing-box studs, bolts, and nuts. Fill joints, seams, and irregular surfaces with insulating cement.
 - 5. Insulate strainers using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. Fill joints, seams, and irregular surfaces with insulating cement. Insulate strainers so strainer basket flange or plug can be easily removed and replaced without damaging the insulation and jacket. Provide a removable reusable insulation cover. For below-ambient services, provide a design that maintains vapor barrier.
 - 6. Insulate flanges and unions using a section of oversized preformed pipe insulation. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker.
 - 7. Cover segmented insulated surfaces with a layer of finishing cement and coat with a mastic. Install vapor-barrier mastic for below-ambient services and a breather mastic for above-ambient services. Reinforce the mastic with fabric-reinforcing mesh. Trowel the mastic to a smooth and well-shaped contour.
 - 8. For services not specified to receive a field-applied jacket except for flexible elastomeric and polyolefin, install fitted PVC cover over elbows, tees, strainers, valves, flanges, and unions. Terminate ends with PVC end caps. Tape PVC covers to adjoining insulation facing using PVC tape.
 - 9. Stencil or label the outside insulation jacket of each union with the word "union." Match size and color of pipe labels.
- C. Insulate instrument connections for thermometers, pressure gages, pressure temperature taps, test connections, flow meters, sensors, switches, and transmitters on insulated pipes. Shape insulation at these connections by tapering it to and around the connection with insulating cement and finish with finishing cement, mastic, and flashing sealant.

3.6 INSTALLATION OF MINERAL-FIBER INSULATION

A. Insulation Installation on Straight Pipes and Tubes:

- 1. Secure each layer of preformed pipe insulation to pipe with wire or bands and tighten bands without deforming insulation materials.
- 2. Where vapor barriers are indicated, seal longitudinal seams, end joints, and protrusions with vapor-barrier mastic and joint sealant.
- 3. For insulation with factory-applied jackets on above-ambient surfaces, secure laps with outward-clinched staples at 6 inches o.c.
- 4. For insulation with factory-applied jackets on below-ambient surfaces, do not staple longitudinal tabs. Instead, secure tabs with additional adhesive as recommended by insulation material manufacturer and seal with vapor-barrier mastic and flashing sealant.

B. Insulation Installation on Pipe Flanges:

- 1. Install preformed pipe insulation to outer diameter of pipe flange.
- 2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
- 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with mineral-fiber blanket insulation.
- 4. Install jacket material with manufacturer's recommended adhesive, overlap seams at least 1 inch, and seal joints with flashing sealant.

C. Insulation Installation on Pipe Fittings and Elbows:

- 1. Install preformed sections of same material as straight segments of pipe insulation when available.
- 2. When preformed insulation elbows and fittings are not available, install mitered sections of pipe insulation, to a thickness equal to adjoining pipe insulation. Secure insulation materials with wire or bands.

D. Insulation Installation on Valves and Pipe Specialties:

- 1. Install preformed sections of same material as straight segments of pipe insulation when available.
- 2. When preformed sections are not available, install mitered sections of pipe insulation to valve body.
- 3. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
- 4. Install insulation to flanges as specified for flange insulation application.

3.7 FIELD-APPLIED JACKET INSTALLATION

- A. Where PVC jackets are indicated, install with 1-inch overlap at longitudinal seams and end joints; for horizontal applications. Seal with manufacturer's recommended adhesive.
 - 1. Apply two continuous beads of adhesive to seams and joints, one bead under lap and the finish bead along seam and joint edge.

3.8 FINISHES

A. Pipe Insulation with ASJ, or Other Paintable Jacket Material: Paint jacket with paint system identified below and as specified in Division 09 painting Sections.

- 1. Flat Acrylic Finish: Two finish coats over a primer that is compatible with jacket material and finish coat paint. Add fungicidal agent to render fabric mildew proof.
 - a. Finish Coat Material: Interior, flat, latex-emulsion size.
- B. Color: Final color as selected by Architect. Vary first and second coats to allow visual inspection of the completed Work.

3.9 PIPING INSULATION SCHEDULE, GENERAL

- A. Acceptable preformed pipe and tubular insulation materials and thicknesses are identified for each piping system and pipe size range. If more than one material is listed for a piping system, selection from materials listed is Contractor's option.
- B. Items Not Insulated: Unless otherwise indicated, do not install insulation on the following:
 - 1. Drainage piping located in crawl spaces.
 - 2. Underground piping.
 - 3. Chrome-plated pipes and fittings unless there is a potential for personnel injury.

3.10 INDOOR PIPING INSULATION SCHEDULE

- A. Steam and Steam Condensate, 350 Deg Fand Below:
 - 1. NPS 3 and Smaller: Insulation shall be the following:
 - a. Mineral-Fiber, Preformed Pipe, Type I or II: 2-1/2 inches thick.
 - 2. NPS 4 and Larger: Insulation shall be the following:
 - a. Mineral-Fiber, Preformed Pipe, Type I or II or Pipe and Tank Insulation: 3 inches thick.

3.11 INDOOR, FIELD-APPLIED JACKET SCHEDULE

- A. Install jacket over insulation material. For insulation with factory-applied jacket, install the field-applied jacket over the factory-applied jacket.
- B. If more than one material is listed, selection from materials listed is Contractor's option.
- C. Piping, Concealed:
 - 1. None.
- D. Piping, Exposed (within 6'-0" from finished floor):
 - 1. PVC: 20 mils thick.

END OF SECTION 23 07 19

SECTION 23 09 00 - INSTRUMENTATION AND CONTROL FOR HVAC

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions, Division 00 Information for Bidders, and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes control equipment for HVAC systems and components, including control components for terminal heating and cooling units not supplied with factory-wired controls.
- B. Related Sections include the following:
 - 1. Section 23 09 93 "Sequence of Operations for HVAC Controls" for requirements that relate to this Section.

1.3 SCOPE OF WORK

A. Expand and modify the existing temperature control system as required to include the new equipment and sequence of operation shown and described in the construction documents.

1.4 DEFINITIONS

- A. DDC: Direct digital control.
- B. I/O: Input/output.
- C. LonWorks: A control network technology platform for designing and implementing interoperable control devices and networks.
- D. PC: Personal computer.
- E. PID: Proportional plus integral plus derivative.
- F. RTD: Resistance temperature detector.

1.5 SYSTEM PERFORMANCE

- A. Comply with the following performance requirements:
 - Graphic Display: Display graphic with minimum 20 dynamic points with current data within 10 seconds.
 - 2. Graphic Refresh: Update graphic with minimum 20 dynamic points with current data within 8 seconds.
 - 3. Object Command: Reaction time of less than two seconds between operator command of a binary object and device reaction.
 - 4. Object Scan: Transmit change of state and change of analog values to control units or workstation within six seconds.

- 5. Alarm Response Time: Annunciate alarm at workstation within 45 seconds. Multiple workstations must receive alarms within five seconds of each other.
- 6. Program Execution Frequency: Run capability of applications as often as five seconds, but selected consistent with mechanical process under control.
- 7. Performance: Programmable controllers shall execute DDC PID control loops, and scan and update process values and outputs at least once per second.
- 8. Reporting Accuracy and Stability of Control: Report values and maintain measured variables within tolerances as follows:
 - a. Water Temperature: Plus or minus 1 deg F.
 - b. Water Flow: Plus or minus 5 percent of full scale.
 - c. Water Pressure: Plus or minus 2 percent of full scale.
 - d. Space Temperature: Plus or minus 1 deg F.
 - e. Ducted Air Temperature: Plus or minus 1 deg F.
 - f. Outside Air Temperature: Plus or minus 2 deg F.
 - g. Dew Point Temperature: Plus or minus 3 deg F.
 - h. Temperature Differential: Plus or minus 0.25 deg F.
 - i. Relative Humidity: Plus or minus 5 percent.
 - j. Airflow (Pressurized Spaces): Plus or minus 3 percent of full scale.
 - k. Airflow (Measuring Stations): Plus or minus 5 percent of full scale.
 - I. Airflow (Terminal): Plus or minus 10 percent of full scale.
 - m. Air Pressure (Space): Plus or minus 0.01-inch wg.
 - n. Air Pressure (Ducts): Plus or minus 0.1-inch wg.
 - o. Carbon Monoxide: Plus or minus 5 percent of reading.
 - p. Carbon Dioxide: Plus or minus 50 ppm.
 - q. Electrical: Plus or minus 5 percent of reading.

1.6 ACTION SUBMITTALS

- A. Product Data: Include manufacturer's technical literature for each control device. Indicate dimensions, capacities, performance characteristics, electrical characteristics, finishes for materials, and installation and startup instructions for each type of product indicated.
 - 1. DDC System Hardware: Bill of materials of equipment indicating quantity, manufacturer, and model number. Include technical data for operator workstation equipment, interface equipment, control units, transducers/transmitters, sensors, actuators, valves, relays/switches, control panels, and operator interface equipment.
 - 2. Control System Software: Include technical data for operating system software, operator interface, color graphics, and other third-party applications.
 - 3. Controlled Systems: Instrumentation list with element name, type of device, manufacturer, model number, and product data. Include written description of sequence of operation including schematic diagram.
- B. Shop Drawings: Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 - 1. Bill of materials of equipment indicating quantity, manufacturer, and model number.
 - 2. Schematic flow diagrams showing fans, pumps, coils, dampers, valves, and control devices.
 - 3. Wiring Diagrams: Power, signal, and control wiring.
 - 4. Details of control panel faces, including controls, instruments, and labeling.
 - 5. Written description of sequence of operation.
 - 6. Schedule of dampers including size, leakage, and flow characteristics.
 - 7. Schedule of valves including flow characteristics.
 - 8. DDC System Hardware:
 - a. Wiring diagrams for control units with termination numbers.
 - b. Schematic diagrams and floor plans for field sensors and control hardware.

- c. Schematic diagrams for control, communication, and power wiring, showing trunk data conductors and wiring between operator workstation and control unit locations.
- 9. Control System Software: List of color graphics indicating monitored systems, data (connected and calculated) point addresses, output schedule, and operator notations.
- 10. Controlled Systems:
 - a. Schematic diagrams of each controlled system with control points labeled and control elements graphically shown, with wiring.
 - b. Scaled drawings showing mounting, routing, and wiring of elements including bases and special construction.
 - c. Written description of sequence of operation including schematic diagram.
 - d. Points list.

1.7 INFORMATIONAL SUBMITTALS

- A. Data Communications Protocol Certificates: Certify that each proposed DDC system component complies with ASHRAE 135.
- B. Data Communications Protocol Certificates: Certify that each proposed DDC system component complies with LonWorks.
- C. Qualification Data: For Installer and manufacturer.
- D. Software Upgrade Kit: For Owner to use in modifying software to suit future systems revisions or monitoring and control revisions.
- E. Field quality-control test reports.

1.8 CLOSEOUT SUBMITTALS

- A. Operation and Maintenance Data: For HVAC instrumentation and control system to include in emergency, operation, and maintenance manuals. In addition to items specified in Section 01 78 23 "Operation and Maintenance Data," include the following:
 - 1. Maintenance instructions and lists of spare parts for each type of control device and compressed-air station.
 - 2. Interconnection wiring diagrams with identified and numbered system components and devices
 - 3. Keyboard illustrations and step-by-step procedures indexed for each operator function.
 - 4. Inspection period, cleaning methods, cleaning materials recommended, and calibration tolerances.
 - 5. Calibration records and list of set points.
- B. Software and Firmware Operational Documentation: Include the following:
 - 1. Software operating and upgrade manuals.
 - 2. Program Software Backup: On a magnetic media or compact disc, complete with data files.
 - 3. Device address list.
 - 4. Printout of software application and graphic screens.
 - 5. Software license required by and installed for DDC workstations and control systems.

1.9 QUALITY ASSURANCE

A. Installer Qualifications: Automatic control system manufacturer's authorized representative who is trained and approved for installation of system components required for this Project.

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

1.10 DELIVERY, STORAGE, AND HANDLING

- A. Factory-Mounted Components: Where control devices specified in this Section are indicated to be factory mounted on equipment, arrange for shipping of control devices to equipment manufacturer.
- B. System Software: Update to latest version of software at Project completion.

1.11 COORDINATION

- A. Coordinate location of thermostats, humidistats, and other exposed control sensors with plans and room details before installation.
- B. Coordinate supply of conditioned electrical branch circuits for control units.
- C. Coordinate equipment with Section 26 24 16 "Panelboards" to achieve compatibility with starter coils and annunciation devices.
- D. Coordinate equipment with Section 26 24 19 "Motor-Control Centers" to achieve compatibility with motor starters and annunciation devices.
- E. Coordinate size and location of concrete bases. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified in Section 03 30 00 "Cast-in-Place Concrete."

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. In other Part 2 articles where titles below introduce lists, the following requirements apply to product selection:
 - Available Manufacturers: Subject to compliance with requirements, manufacturers
 offering products that may be incorporated into the Work include, but are not limited to,
 manufacturers specified.
 - 2. Manufacturers: Subject to compliance with requirements, provide products by one of the manufacturers specified.

2.2 CONTROL SYSTEM

A. Manufacturers:

- 1. Honeywell WEBS Jace-AX.
- 2. Tridium-Niagara-Vykon Jace-AX
- 3. Siemens Talon-Jace AX.
- 4. Distech-EC-NET-Jace-AX.
- 5. Schneider Electric -I/A Series-Jace AX
- 6. Johnson Controls

- B. The control equipment shall incorporate BacNet or LonMark technology at the controller level and Niagara Frame AX version technology at the network device level and as network management tool.
- C. Control system shall consist of sensors, indicators, actuators, final control elements, interface equipment, other apparatus, accessories, and software connected to distributed controllers operating in multiuser, multitasking environment on token-passing network and programmed to control mechanical systems. All graphics associated with the controls work will be created and implemented under a separate contract by the school district's existing service provider.
 - 1. The system installed shall seamless connect devices other than HVAC throughout the building regardless of subsystem type, i.e. HVAC, lighting and security devices should easily coexist on the same network channel without the need for gateways.

2.3 DDC EQUIPMENT

- A. Control Units: Modular, comprising processor board with programmable, nonvolatile, random-access memory; local operator access and display panel; integral interface equipment; and backup power source.
 - Units monitor or control each I/O point; process information; execute commands from other control units, devices, and operator stations; and download from or upload to operator workstation or diagnostic terminal unit.
 - 2. Stand-alone mode control functions operate regardless of network status. Functions include the following:
 - a. Global communications.
 - b. Discrete/digital, analog, and pulse I/O.
 - c. Monitoring, controlling, or addressing data points.
 - d. Software applications, scheduling, and alarm processing.
 - e. Testing and developing control algorithms without disrupting field hardware and controlled environment.
 - 3. Standard Application Programs:
 - a. Electric Control Programs: Demand limiting, duty cycling, automatic time scheduling, start/stop time optimization, night setback/setup, on-off control with differential sequencing, staggered start, antishort cycling, PID control, DDC with fine tuning, and trend logging.
 - b. HVAC Control Programs: Optimal run time, supply-air reset, and enthalpy switchover.
 - c. Programming Application Features: Include trend point; alarm processing and messaging; weekly, monthly, and annual scheduling; energy calculations; run-time totalization; and security access.
 - d. Remote communications.
 - e. Maintenance management.
 - f. Units of Measure: Inch-pound and SI (metric).
 - 4. Local operator interface provides for download from or upload to operator workstation or diagnostic terminal unit.
 - 5. ASHRAE 135 Compliance: Control units shall use ASHRAE 135 protocol and communicate using ISO 8802-3 (Ethernet) datalink/physical layer protocol.
 - 6. LonWorks Compliance: Control units shall use LonTalk protocol and communicate using EIA/CEA 709.1 datalink/physical layer protocol.
- B. Local Control Units: Modular, comprising processor board with electronically programmable, nonvolatile, read-only memory; and backup power source.
 - 1. Units monitor or control each I/O point, process information, and download from or upload to operator workstation or diagnostic terminal unit.
 - 2. Stand-alone mode control functions operate regardless of network status. Functions include the following:

- a. Global communications.
- b. Discrete/digital, analog, and pulse I/O.
- c. Monitoring, controlling, or addressing data points.
- 3. Local operator interface provides for download from or upload to operator workstation or diagnostic terminal unit.
- 4. ASHRAE 135 Compliance: Control units shall use ASHRAE 135 protocol and communicate using ISO 8802-3 (Ethernet) datalink/physical layer protocol.
- 5. LonWorks Compliance: Control units shall use LonTalk protocol and communicate using EIA/CEA 709.1 datalink/physical layer protocol.
- C. I/O Interface: Hardwired inputs and outputs may tie into system through controllers. Protect points so that shorting will cause no damage to controllers.
 - 1. Binary Inputs: Allow monitoring of on-off signals without external power.
 - 2. Pulse Accumulation Inputs: Accept up to 10 pulses per second.
 - 3. Analog Inputs: Allow monitoring of low-voltage (0- to 10-V dc), current (4 to 20 mA), or resistance signals.
 - 4. Binary Outputs: Provide on-off or pulsed low-voltage signal, selectable for normally open or normally closed operation with three-position (on-off-auto) override switches and status lights.
 - 5. Analog Outputs: Provide modulating signal, either low voltage (0- to 10-V dc) or current (4 to 20 mA) with status lights, two-position (auto-manual) switch, and manually adjustable potentiometer.
 - 6. Tri-State Outputs: Provide two coordinated binary outputs for control of three-point, floating-type electronic actuators.
 - 7. Universal I/Os: Provide software selectable binary or analog outputs.
- D. Power Supplies: Transformers with Class 2 current-limiting type or overcurrent protection; limit connected loads to 80 percent of rated capacity. DC power supply shall match output current and voltage requirements and be full-wave rectifier type with the following:
 - 1. Output ripple of 5.0 mV maximum peak to peak.
 - 2. Combined 1 percent line and load regulation with 100-mic.sec. response time for 50 percent load changes.
 - 3. Built-in overvoltage and overcurrent protection and be able to withstand 150 percent overload for at least 3 seconds without failure.
- E. Power Line Filtering: Internal or external transient voltage and surge suppression for workstations or controllers with the following:
 - 1. Minimum dielectric strength of 1000 V.
 - 2. Maximum response time of 10 nanoseconds.
 - 3. Minimum transverse-mode noise attenuation of 65 dB.
 - 4. Minimum common-mode noise attenuation of 150 dB at 40 to 100 Hz.

2.4 UNITARY CONTROLLERS

- A. Unitized, capable of stand-alone operation with sufficient memory to support its operating system, database, and programming requirements, and with sufficient I/O capacity for the application.
 - Configuration: Local keypad and display; diagnostic LEDs for power, communication, and processor; wiring termination to terminal strip or card connected with ribbon cable; memory with bios; and 72-hour battery backup.
 - 2. Operating System: Manage I/O communication to allow distributed controllers to share real and virtual object information and allow central monitoring and alarms. Perform scheduling with real-time clock. Perform automatic system diagnostics; monitor system and report failures.

- 3. ASHRAE 135 Compliance: Communicate using read (execute and initiate) and write (execute and initiate) property services defined in ASHRAE 135. Reside on network using MS/TP datalink/physical layer protocol and have service communication port for connection to diagnostic terminal unit.
- 4. LonWorks Compliance: Communicate using EIA/CEA 709.1 datalink/physical layer protocol using LonTalk protocol.
- 5. Enclosure: Dustproof rated for operation at 32 to 120 deg F.
- 6. Enclosure: Waterproof rated for operation at 40 to 150 deg F.

2.5 ANALOG CONTROLLERS

- A. Step Controllers: 6- or 10-stage type, with heavy-duty switching rated to handle loads and operated by electric motor.
- B. Electric, Outdoor-Reset Controllers: Remote-bulb or bimetal rod-and-tube type, proportioning action with adjustable throttling range, adjustable set point, scale range minus 10 to plus 70 deg F, and single- or double-pole contacts.
- C. Electronic Controllers: Wheatstone-bridge-amplifier type, in steel enclosure with provision for remote-resistance readjustment. Identify adjustments on controllers, including proportional band and authority.
 - 1. Single controllers can be integral with control motor if provided with accessible control readjustment potentiometer.
- D. Fan-Speed Controllers: Solid-state model providing field-adjustable proportional control of motor speed from maximum to minimum of 55 percent and on-off action below minimum fan speed. Controller shall briefly apply full voltage, when motor is started, to rapidly bring motor up to minimum speed. Equip with filtered circuit to eliminate radio interference.
- E. Receiver Controllers: Single- or multiple-input models with control-point adjustment, direct or reverse acting with mechanical set-point adjustment with locking device, proportional band adjustment, authority adjustment, and proportional control mode.
 - 1. Remote-control-point adjustment shall be plus or minus 20 percent of sensor span, input signal of 3 to 13 psig.
 - 2. Proportional band shall extend from 2 to 20 percent for 5 psig.
 - 3. Authority shall be 20 to 200 percent.
 - 4. Air-supply pressure of 18 psig, input signal of 3 to 15 psig, and output signal of zero to supply pressure.
 - 5. Gages: 1-1/2 inches in diameter, 2.5 percent wide-scale accuracy, and range to match transmitter input or output pressure.

2.6 TIME CLOCKS

A. Manufacturers:

- ATC-Diversified Electronics.
- 2. Grasslin Controls Corporation.
- 3. Paragon Electric Co., Inc.
- 4. Precision Multiple Controls, Inc.
- 5. SSAC Inc.; ABB USA.
- 6. TCS/Basys Controls.
- 7. Theben AG Lumilite Control Technology, Inc.
- 8. Time Mark Corporation.

- B. Seven-day, programming-switch timer with synchronous-timing motor and seven-day dial; continuously charged, nickel-cadmium-battery-driven, eight-hour, power-failure carryover; multiple-switch trippers; minimum of two and maximum of eight signals per day with two normally open and two normally closed output contacts.
- C. Solid-state, programmable time control with 4 separate programs each with up to 100 on-off operations; 1-second resolution; lithium battery backup; keyboard interface and manual override; individual on-off-auto switches for each program; 365-day calendar with 20 programmable holidays; choice of fail-safe operation for each program; system fault alarm; and communications package allowing networking of time controls and programming from PC.

2.7 ELECTRONIC SENSORS

- A. Description: Vibration and corrosion resistant; for wall, immersion, or duct mounting as required.
- B. Thermistor Temperature Sensors and Transmitters:
 - Manufacturers:
 - a. BEC Controls Corporation.
 - b. Ebtron, Inc.
 - c. Heat-Timer Corporation.
 - d. I.T.M. Instruments Inc.
 - e. MAMAC Systems, Inc.
 - f. RDF Corporation.
 - 2. Accuracy: Plus or minus 0.5 deg F at calibration point.
 - 3. Wire: Twisted, shielded-pair cable.
 - 4. Insertion Elements in Ducts: Single point, 8 inches long; use where not affected by temperature stratification or where ducts are smaller than 9 sq. ft..
 - 5. Averaging Elements in Ducts: 36 inches long, flexible; use where prone to temperature stratification or where ducts are larger than 10 sq. ft..
 - 6. Insertion Elements for Liquids: Brass or stainless-steel socket with minimum insertion length of 2-1/2 inches.
 - 7. Room Sensor Cover Construction: Plain stainless steel wall plate with 10k Type II thermistor.
 - a. Set-Point Adjustment: Concealed.
 - b. Set-Point Indication: Concealed.
 - c. Thermometer: Concealed.
 - d. Orientation: Vertical.
 - 8. Outside-Air Sensors: Watertight inlet fitting, shielded from direct sunlight.
 - 9. Room Security Sensors: Stainless-steel cover plate with insulated back and security screws

C. RTDs and Transmitters:

- Manufacturers:
 - a. BEC Controls Corporation.
 - b. MAMAC Systems, Inc.
 - c. RDF Corporation.
- 2. Accuracy: Plus or minus 0.2 percent at calibration point.
- 3. Wire: Twisted, shielded-pair cable.
- 4. Insertion Elements in Ducts: Single point, 8 inches long; use where not affected by temperature stratification or where ducts are smaller than 9 sq. ft..
- 5. Averaging Elements in Ducts: 18 inches long, rigid; use where prone to temperature stratification or where ducts are larger than 9 sq. ft.; length as required.
- 6. Insertion Elements for Liquids: Brass socket with minimum insertion length of 2-1/2 inches.

- 7. Room Sensor Cover Construction: Plain stainless steel wall plate with 10k Type II thermistor
 - a. Set-Point Adjustment: Concealed.
 - b. Set-Point Indication: Concealed.
 - c. Thermometer: Concealed.
 - d. Orientation: Vertical.
- 8. Outside-Air Sensors: Watertight inlet fitting, shielded from direct sunlight.
- Room Security Sensors: Stainless-steel cover plate with insulated back and security screws.
- D. Humidity Sensors: Bulk polymer sensor element.
 - Manufacturers:
 - a. BEC Controls Corporation.
 - b. General Eastern Instruments.
 - c. MAMAC Systems, Inc.
 - d. ROTRONIC Instrument Corp.
 - e. TCS/Basys Controls.
 - f. Vaisala.
 - 2. Accuracy: 2 percent full range with linear output.
 - 3. Room Sensor Range: 20 to 80 percent relative humidity.
 - 4. Room Sensor Cover Construction: Manufacturer's standard locking covers.
 - a. Set-Point Adjustment: Concealed.
 - b. Set-Point Indication: Concealed.
 - c. Thermometer: Concealed.
 - d. Orientation: Vertical.
 - 5. Duct Sensor: 20 to 80 percent relative humidity range with element guard and mounting plate.
 - 6. Outside-Air Sensor: 20 to 80 percent relative humidity range with mounting enclosure, suitable for operation at outdoor temperatures of 32 to 120 deg F.
 - 7. Duct and Sensors: With element guard and mounting plate, range of 0 to 100 percent relative humidity.
- E. Pressure Transmitters/Transducers:
 - Manufacturers:
 - a. BEC Controls Corporation.
 - b. General Eastern Instruments.
 - c. MAMAC Systems, Inc.
 - d. ROTRONIC Instrument Corp.
 - e. TCS/Basys Controls.
 - f. Vaisala.
 - 2. Static-Pressure Transmitter: Nondirectional sensor with suitable range for expected input, and temperature compensated.
 - a. Accuracy: 2 percent of full scale with repeatability of 0.5 percent.
 - b. Output: 4 to 20 mA.
 - c. Building Static-Pressure Range: 0- to 0.25-inch wg.
 - d. Duct Static-Pressure Range: 0- to 5-inch wg.
 - 3. Water Pressure Transducers: Stainless-steel diaphragm construction, suitable for service; minimum 150-psig operating pressure; linear output 4 to 20 mA.
 - 4. Water Differential-Pressure Transducers: Stainless-steel diaphragm construction, suitable for service; minimum 150-psig operating pressure and tested to 300-psig; linear output 4 to 20 mA.
 - 5. Differential-Pressure Switch (Air or Water): Snap acting, with pilot-duty rating and with suitable scale range and differential.
 - 6. Pressure Transmitters: Direct acting for gas, liquid, or steam service; range suitable for system; linear output 4 to 20 mA.

- F. Room Sensor Cover Construction: Plain stainless steel wall plate with 10k Type II thermistor.
 - Set-Point Adjustment: Concealed.
 - b. Set-Point Indication: Concealed.
 - c. Thermometer: Concealed.
 - d. Orientation: Vertical.
- G. Room sensor accessories include the following:
 - 1. Insulating Bases: For sensors located on exterior walls.
 - 2. Guards: Locking; heavy-duty, transparent plastic; mounted on separate base.
 - 3. Adjusting Key: As required for calibration and cover screws.

2.8 STATUS SENSORS

- A. Status Inputs for Fans: Differential-pressure switch with pilot-duty rating and with adjustable range of 0- to 5-inch wg.
- B. Status Inputs for Electric Motors: Comply with ISA 50.00.01, current-sensing fixed- or split-core transformers with self-powered transmitter, adjustable and suitable for 175 percent of rated motor current.
- C. Voltage Transmitter (100- to 600-V ac): Comply with ISA 50.00.01, single-loop, self-powered transmitter, adjustable, with suitable range and 1 percent full-scale accuracy.
- D. Power Monitor: 3-phase type with disconnect/shorting switch assembly, listed voltage and current transformers, with pulse kilowatt hour output and 4- to 20-mA kW output, with maximum 2 percent error at 1.0 power factor and 2.5 percent error at 0.5 power factor.
- E. Current Switches: Self-powered, solid-state with adjustable trip current, selected to match current and system output requirements.
- F. Electronic Valve/Damper Position Indicator: Visual scale indicating percent of travel and 2- to 10-V dc, feedback signal.

2.9 FLOW MEASURING STATIONS

- A. Duct Airflow Station: Combination of air straightener and multiport, self-averaging pitot tube station.
 - 1. Available Manufacturers:
 - a. Air Monitor Corporation.
 - b. Wetmaster Co., Ltd.
 - 2. Casing: Galvanized-steel frame.
 - 3. Flow Straightener: Aluminum honeycomb, 3/4-inch parallel cell, 3 inches deep.
 - 4. Sensing Manifold: Copper manifold with bullet-nosed static pressure sensors positioned on equal area basis.

2.10 THERMOSTATS

- A. Manufacturers:
 - 1. Erie Controls.
 - 2. Danfoss Inc.; Air-Conditioning and Refrigeration Div.
 - 3. Heat-Timer Corporation.
 - 4. Sauter Controls Corporation.
 - 5. tekmar Control Systems, Inc.
 - 6. Theben AG Lumilite Control Technology, Inc.

- B. Combination Thermostat and Fan Switches: Line-voltage thermostat with push-button or leveroperated fan switch.
 - Label switches "FAN HIGH-MED-LOW-OFF".
 - 2. Mount on single electric switch box.
- C. Electric, solid-state, microcomputer-based room thermostat with remote sensor.
 - 1. Automatic switching from heating to cooling.
 - 2. Preferential rate control to minimize overshoot and deviation from set point.
 - 3. Set up for four separate temperatures per day.
 - 4. Instant override of set point for continuous or timed period from 1 hour to 31 days.
 - 5. Short-cycle protection.
 - 6. Programming based on every day of week.
 - 7. Selection features include degree F or degree C display, 12- or 24-hour clock, keyboard disable, remote sensor, and fan on-auto.
 - 8. Battery replacement without program loss.
 - 9. Thermostat display features include the following:
 - a. Time of day.
 - b. Actual room temperature.
 - c. Programmed temperature.
 - d. Programmed time.
 - e. Duration of timed override.
 - f. Day of week.
 - g. System mode indications include "heating," "off," "fan auto," and "fan on."
- D. Low-Voltage, On-Off Thermostats: NEMA DC 3, 24-V, bimetal-operated, mercury-switch type, with adjustable or fixed anticipation heater, concealed set-point adjustment, 55 to 85 deg F set-point range, and 2 deg F maximum differential.
- E. Line-Voltage, On-Off Thermostats: Bimetal-actuated, open contact or bellows-actuated, enclosed, snap-switch or equivalent solid-state type, with heat anticipator; listed for electrical rating; with concealed set-point adjustment, 55 to 85 deg F set-point range, and 2 deg F maximum differential.
 - Electric Heating Thermostats: Equip with off position on dial wired to break ungrounded conductors.
 - 2. Selector Switch: Integral, manual on-off-auto.
- F. Remote-Bulb Thermostats: On-off or modulating type, liquid filled to compensate for changes in ambient temperature; with copper capillary and bulb, unless otherwise indicated.
 - 1. Bulbs in water lines with separate wells of same material as bulb.
 - 2. Bulbs in air ducts with flanges and shields.
 - 3. Averaging Elements: Copper tubing with either single- or multiple-unit elements, extended to cover full width of duct or unit; adequately supported.
 - Scale settings and differential settings are clearly visible and adjustable from front of instrument.
 - 5. On-Off Thermostat: With precision snap switches and with electrical ratings required by application.
 - 6. Modulating Thermostats: Construct so complete potentiometer coil and wiper assembly is removable for inspection or replacement without disturbing calibration of instrument.
- G. Airstream Thermostats: Two-pipe, fully proportional, single-temperature type; with adjustable set point in middle of range, adjustable throttling range, plug-in test fitting or permanent pressure gage, remote bulb, bimetal rod and tube, or averaging element.

- H. Electric, Low-Limit Duct Thermostat: Snap-acting, single-pole, single-throw, manual- or automatic- reset switch that trips if temperature sensed across any 12 inches of bulb length is equal to or below set point.
 - 1. Bulb Length: Minimum 20 feet.
 - 2. Quantity: One thermostat for every 20 sq. ft. of coil surface.
- I. Electric, High-Limit Duct Thermostat: Snap-acting, single-pole, single-throw, manual- or automatic- reset switch that trips if temperature sensed across any 12 inches of bulb length is equal to or above set point.
 - 1. Bulb Length: Minimum 20 feet.
 - 2. Quantity: One thermostat for every 20 sq. ft. of coil surface.
- J. Heating/Cooling Valve-Top Thermostats: Proportional acting for proportional flow, with molded-rubber diaphragm, remote-bulb liquid-filled element, direct and reverse acting at minimum shutoff pressure of 25 psig, and cast housing with position indicator and adjusting knob.

2.11 HUMIDISTATS

- A. Available Manufacturers:
 - 1. MAMAC Systems, Inc.
 - 2. ROTRONIC Instrument Corp.
- B. Duct-Mounting Humidistats: Electric insertion, 2-position type with adjustable, 2 percent throttling range, 20 to 80 percent operating range, and single- or double-pole contacts.

2.12 ACTUATORS

- A. Electric Motors: Size to operate with sufficient reserve power to provide smooth modulating action or two-position action.
 - Comply with requirements in Section 23 05 13 "Common Motor Requirements for HVAC Equipment."
 - 2. Permanent Split-Capacitor or Shaded-Pole Type: Gear trains completely oil immersed and sealed. Equip spring-return motors with integral spiral-spring mechanism in housings designed for easy removal for service or adjustment of limit switches, auxiliary switches, or feedback potentiometer.
 - 3. Nonspring-Return Motors for Dampers Larger Than 25 Sq. Ft.: Size for running torque of 150 in. x lbf and breakaway torque of 300 in. x lbf.
 - 4. Spring-Return Motors for Dampers Larger Than 25 Sq. Ft.: Size for running and breakaway torque of 150 in. x lbf.
- B. Electronic Actuators: Direct-coupled type designed for minimum 60,000 full-stroke cycles at rated torque.
 - 1. Available Manufacturers:
 - a. Belimo Aircontrols (USA), Inc.
 - 2. Dampers: Size for running torque calculated as follows:
 - a. Parallel-Blade Damper with Edge Seals: 7 inch-lb/sq. ft. of damper.
 - b. Opposed-Blade Damper with Edge Seals: 5 inch-lb/sq. ft. of damper.
 - c. Parallel-Blade Damper without Edge Seals: 4 inch-lb/sq. ft of damper.
 - d. Opposed-Blade Damper without Edge Seals: 3 inch-lb/sq. ft. of damper.
 - e. Dampers with 2- to 3-Inch wg of Pressure Drop or Face Velocities of 1000 to 2500 fpm: Increase running torque by 1.5.
 - f. Dampers with 3- to 4-Inch wg of Pressure Drop or Face Velocities of 2500 to 3000 fpm: Increase running torque by 2.0.
 - 3. Coupling: V-bolt and V-shaped, toothed cradle.
 - 4. Overload Protection: Electronic overload or digital rotation-sensing circuitry.

- 5. Fail-Safe Operation: Mechanical, spring-return mechanism. Provide external, manual gear release on nonspring-return actuators.
- 6. Power Requirements (Two-Position Spring Return): 24-V ac.
- 7. Power Requirements (Modulating): Maximum 10 VA at 24-V ac or 8 W at 24-V dc.
- 8. Proportional Signal: 2- to 10-V dc or 4 to 20 mA, and 2- to 10-V dc position feedback signal.
- 9. Temperature Rating: Minus 22 to plus 122 deg F.
- 10. Temperature Rating (Smoke Dampers): Minus 22 to plus 250 deg F.
- 11. Run Time: 12 seconds open, 5 seconds closed.

2.13 DAMPERS

A. Manufacturers:

- 1. Air Balance Inc.
- 2. Don Park Inc.; Autodamp Div.
- 3. TAMCO (T. A. Morrison & Co. Inc.).
- 4. United Enertech Corp.
- 5. Vent Products Company, Inc.
- B. Dampers: AMCA-rated, parallel or opposed-blade design; 0.108-inch- minimum thick, galvanized-steel or 0.125-inch- minimum thick, extruded-aluminum frames with holes for duct mounting; damper blades shall not be less than 0.064-inch- thick galvanized steel with maximum blade width of 8 inches and length of 48 inches.
 - Secure blades to 1/2-inch- diameter, zinc-plated axles using zinc-plated hardware, with oil-impregnated sintered bronze blade bearings, blade-linkage hardware of zinc-plated steel and brass, ends sealed against spring-stainless-steel blade bearings, and thrust bearings at each end of every blade.
 - 2. Operating Temperature Range: From minus 40 to plus 200 deg F.
 - 3. Edge Seals, Standard Pressure Applications: Closed-cell neoprene.
 - 4. Edge Seals, Low-Leakage Applications: Use inflatable blade edging or replaceable rubber blade seals and spring-loaded stainless-steel side seals, rated for leakage at less than 10 cfm per sq. ft. of damper area, at differential pressure of 4-inch wg when damper is held by torque of 50 in. x lbf; when tested according to AMCA 500D.

2.14 CONTROL CABLE

A. Electronic and fiber-optic cables for control wiring are specified in Section 27 15 00 "Communications Horizontal Cabling."

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Verify that conditioned power supply is available to control units and operator workstation.
- B. Verify that pneumatic piping and duct-, pipe-, and equipment-mounted devices are installed before proceeding with installation.

3.2 INSTALLATION

- A. Install software in control units and operator workstation(s). Implement all features of programs to specified requirements and as appropriate to sequence of operation.
- B. Connect and configure equipment and software to achieve sequence of operation specified.

- C. Verify location of thermostats, humidistats, and other exposed control sensors with Drawings and room details before installation. Install devices 60 inches above the floor.
 - 1. Install averaging elements in ducts and plenums in crossing or zigzag pattern.
- D. Install guards on thermostats in the following locations:
 - Entrances.
 - 2. Public areas.
 - 3. Where indicated.
- E. Install automatic dampers according to Section 23 33 00 "Air Duct Accessories."
- F. Install damper motors on outside of duct in warm areas, not in locations exposed to outdoor temperatures.
- G. Install labels and nameplates to identify control components according to Section 23 05 53 "Identification for HVAC Piping and Equipment."
- H. Install electronic and fiber-optic cables according to Section 27 15 00 "Communications Horizontal Cabling."

3.3 ELECTRICAL WIRING AND CONNECTION INSTALLATION

- A. Install raceways, boxes, and cabinets according to Section 26 05 33 "Raceways and Boxes for Electrical Systems."
- B. Install building wire and cable according to Section 26 05 19 "Low-Voltage Electrical Power Conductors and Cables."
- C. Install signal and communication cable according to Section 27 15 00 "Communications Horizontal Cabling."
 - 1. Conceal cable, except in mechanical rooms and areas where other conduit and piping are exposed.
 - 2. Install exposed cable in raceway.
 - 3. Install concealed cable in raceway.
 - 4. Bundle and harness multiconductor instrument cable in place of single cables where several cables follow a common path.
 - 5. Fasten flexible conductors, bridging cabinets and doors, along hinge side; protect against abrasion. Tie and support conductors.
 - 6. Number-code or color-code conductors for future identification and service of control system, except local individual room control cables.
 - 7. Install wire and cable with sufficient slack and flexible connections to allow for vibration of piping and equipment.
- D. Connect manual-reset limit controls independent of manual-control switch positions. Automatic duct heater resets may be connected in interlock circuit of power controllers.
- E. Connect hand-off-auto selector switches to override automatic interlock controls when switch is in hand position.

3.4 FIELD QUALITY CONTROL

A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust field-assembled components and equipment installation, including connections, and to assist in field testing. Report results in writing.

B. DDC Verification:

- 1. Verify that instruments are installed before calibration, testing, and loop or leak checks.
- 2. Check instruments for proper location and accessibility.
- 3. Check instrument installation for direction of flow, elevation, orientation, insertion depth, and other applicable considerations.
- 4. Check instrument tubing for proper fittings, slope, material, and support.
- 5. Check installation of air supply for each instrument.
- 6. Check flow instruments. Inspect tag number and line and bore size, and verify that inlet side is identified and that meters are installed correctly.
- 7. Check pressure instruments, piping slope, installation of valve manifold, and self-contained pressure regulators.
- 8. Check temperature instruments and material and length of sensing elements.
- 9. Check control valves. Verify that they are in correct direction.
- 10. Check air-operated dampers. Verify that pressure gages are provided and that proper blade alignment, either parallel or opposed, has been provided.
- 11. Check DDC system as follows:
 - a. Verify that DDC controller power supply is from emergency power supply, if applicable.
 - b. Verify that wires at control panels are tagged with their service designation and approved tagging system.
 - c. Verify that spare I/O capacity has been provided.
 - d. Verify that DDC controllers are protected from power supply surges.
- C. Replace damaged or malfunctioning controls and equipment and repeat testing procedures.

3.5 ADJUSTING

A. Calibrating and Adjusting:

- Calibrate instruments.
- Make three-point calibration test for both linearity and accuracy for each analog instrument.
- Calibrate equipment and procedures using manufacturer's written recommendations and instruction manuals. Use test equipment with accuracy at least double that of instrument being calibrated.
- 4. Control System Inputs and Outputs:
 - a. Check analog inputs at 0, 50, and 100 percent of span.
 - b. Check analog outputs using milliampere meter at 0, 50, and 100 percent output.
 - c. Check digital inputs using jumper wire.
 - d. Check digital outputs using ohmmeter to test for contact making or breaking.
 - e. Check resistance temperature inputs at 0, 50, and 100 percent of span using a precision-resistant source.
- 5. Flow:
 - a. Set differential pressure flow transmitters for 0 and 100 percent values with 3-point calibration accomplished at 50, 90, and 100 percent of span.
 - b. Manually operate flow switches to verify that they make or break contact.
- 6. Pressure
 - a. Calibrate pressure transmitters at 0, 50, and 100 percent of span.
 - b. Calibrate pressure switches to make or break contacts, with adjustable differential set at minimum.
- 7. Temperature:
 - a. Calibrate resistance temperature transmitters at 0, 50, and 100 percent of span using a precision-resistance source.
 - b. Calibrate temperature switches to make or break contacts.

- 8. Stroke and adjust control valves and dampers without positioners, following the manufacturer's recommended procedure, so that valve or damper is 100 percent open and closed.
- 9. Stroke and adjust control valves and dampers with positioners, following manufacturer's recommended procedure, so that valve and damper is 0, 50, and 100 percent closed.
- 10. Provide diagnostic and test instruments for calibration and adjustment of system.
- 11. Provide written description of procedures and equipment for calibrating each type of instrument. Submit procedures review and approval before initiating startup procedures.
- B. Adjust initial temperature and humidity set points.
- C. Occupancy Adjustments: When requested within 12 months of date of Substantial Completion, provide on-site assistance in adjusting system to suit actual occupied conditions. Provide up to three visits to Project during other than normal occupancy hours for this purpose.

3.6 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain HVAC instrumentation and controls. Refer to Section 01 79 00 "Demonstration and Training."

END OF SECTION 23 09 00

SECTION 23 09 93 - SEQUENCE OF OPERATIONS FOR HVAC CONTROLS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions, Division 00 Information for Bidders, and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes control sequences for HVAC systems, subsystems, and equipment.
- B. Related Sections include the following:
 - 1. Section 230900 "Instrumentation and Control for HVAC" for control equipment and devices and for submittal requirements.

1.3 DEFINITIONS

A. DDC: Direct digital control.

1.4 CLASSROOM UNIT VENTILATORS & FAN COIL UNITS: STEAM HEAT (ASHREA CYCLE II)

A. The DDC control system shall provide time of day programming and monitor all points associated with the unit ventilators. Override to occupied mode to be by manual switch.

B. Occupied Mode:

- O/A cfm greater than or equal to the minimum cfm scheduled to be maintained at all times.
- 2. When O/A damper has reached the minimum position, blower fan shall energize and air flow proven.
- 3. On a call for cooling with outside air temperature above 60°F, the steam control valve shall close, and the unit shall go into economizer mode.
- 4. On a call for heating, the steam control valve shall open and the F&BP damper shall modulate as required to maintain required room temperature of 70°F (adjustable). When the outside air temperature rises above 65°F, the steam control valve shall close and the UV shall go into economizer mode.

C. Economizer Mode:

1. In the economizer mode, O/A damper and R/A damper shall modulate between their minimum and maximum positions with the steam control valve closed. If M/A temperature drops below 55°F, the O/A damper is to modulate to the minimum position and UV shall go into its heating mode.

D. Unoccupied Mode:

- 1. Blower fan shall de-energize, O/A damper shall be closed and R/A damper shall be open.
- 2. On a call for heating, the fan shall energize and once flow has been proven, the steam control valve shall open and the F&BP damper shall modulate to maintain the room night set back temperature of 55°F (adjustable).

E. Morning warm-up heating mode:

1. The unit ventilator fan shall energize and run continuously and the outside air damper shall be closed. The return air damper, and the steam control valve shall be fully open, the F&BP damper shall modulate to the full face position until the room occupied set point temperature is achieved and the unit shall go into occupied mode.

F. Safety Devices:

- 1. Freeze Protection If D/A temperature off steam coil falls below 40°F signal alarm. Blower fan shall de-energize. O/A damper shall close and R/A damper shall open.
- 2. No air flow condition If blower fan is on and no flow is detected after an adjustable time lapse, an alarm shall be signaled.
- 3. Sensor failure If any of the following sensors fail, an alarm shall be sounded:

4.

- a. Room temperature
- b. Discharge air temperature
- c. Return air temperature
- d. Outside air temperature

PART 2 - PRODUCTS (Not Applicable)

PART 3 - EXECUTION (Not Applicable)

END OF SECTION 23 09 93

SECTION 232213 - STEAM AND CONDENSATE HEATING PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes pipe and fittings for LP steam and condensate piping:
- B. Related Requirements:
 - 1. Section 232216 "Steam and Condensate Piping Specialties" for special-duty valves, steam traps, thermostatic air vents and vacuum breakers.

1.3 QUALITY ASSURANCE

- A. Steel Support Welding: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code Steel."
- B. Pipe Welding: Qualify procedures and operators according to the following:
 - 1. ASME Compliance: Comply with ASME B31.9, "Building Services Piping," for materials, products, and installation.
 - 2. Certify that each welder has passed AWS qualification tests for welding processes involved and that certification is current.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Components and installation shall be capable of withstanding the following minimum working pressures and temperatures unless otherwise indicated:
 - 1. LP Steam Piping: 125 psig.
 - 2. Condensate Piping: 125 psig at 250 deg F.
 - 3. Air-Vent and Vacuum-Breaker Piping: Equal to pressure of the piping system to which it is attached.

2.2 STEEL PIPE AND FITTINGS

A. Steel Pipe: ASTM A 53/A 53M, black steel, plain ends, welded and seamless, Grade B, and Schedule as indicated in piping applications articles.

- B. Cast-Iron Threaded Fittings: ASME B16.4; Classes 125, 150, and 300 as indicated in piping applications articles.
- C. Malleable-Iron Threaded Fittings: ASME B16.3; Classes 150 and 300 as indicated in piping applications articles.
- D. Malleable-Iron Unions: ASME B16.39; Classes 150, 250, and 300 as indicated in piping applications articles.
- E. Cast-Iron Threaded Flanges and Flanged Fittings: ASME B16.1, Classes 125 and 250 as indicated in piping applications articles; raised ground face, and bolt holes spot faced.
- F. Wrought-Steel Fittings: ASTM A 234/A 234M, wall thickness to match adjoining pipe.
- G. Wrought-Steel Flanges and Flanged Fittings: ASME B16.5, including bolts, nuts, and gaskets of the following material group, end connections, and facings:
 - 1. Material Group: 1.1.
 - 2. End Connections: Butt welding.
 - 3. Facings: Raised face.
- H. Steel Pipe Nipples: ASTM A 733, made of ASTM A 53/A 53M, black steel of same Type, Grade, and Schedule as pipe in which installed.

2.3 JOINING MATERIALS

- A. Pipe-Flange Gasket Materials: Suitable for chemical and thermal conditions of piping system contents.
 - 1. ASME B16.21, nonmetallic, flat, asbestos free, 1/8-inch maximum thickness unless otherwise indicated.
 - a. Full-Face Type: For flat-face, Class 125, cast-iron and cast-bronze flanges.
 - b. Narrow-Face Type: For raised-face, Class 250, cast-iron and steel flanges.
- B. Flange Bolts and Nuts: ASME B18.2.1, carbon steel, unless otherwise indicated.
- C. Welding Filler Metals: Comply with AWS D10.12M/D10.12 for welding materials appropriate for wall thickness and chemical analysis of steel pipe being welded.
- D. Welding Materials: Comply with Section II, Part C, of ASME Boiler and Pressure Vessel Code for welding materials appropriate for wall thickness and for chemical analysis of pipe being welded.

PART 3 - EXECUTION

3.1 LP STEAM PIPING APPLICATIONS

A. LP Steam Piping, NPS 2 and Smaller: Schedule 40, Type S, Grade B, steel pipe; Class 125 cast-iron fittings; and threaded joints.

- B. LP Steam Piping, NPS 2-1/2 through NPS 12: Schedule 40, Type E, Grade B, steel pipe; Class 150 wrought-steel fittings, flanges, and flange fittings; and welded and flanged joints.
- C. LP Steam Piping, NPS 14 through NPS 18: Schedule 30, Type E, Grade B, steel pipe; Class 150 wrought-steel fittings, flanges, and flange fittings; and welded and flanged joints.
- D. LP Steam Piping, NPS 20: Schedule 20, Type E, Grade B, steel pipe; Class 150 wrought-steel fittings, flanges, and flange fittings; and welded and flanged joints.
- E. Condensate piping above grade, NPS 2 and smaller, shall be the following:
 - 1. Schedule 80, Type S, Grade B, steel pipe; Class 125 cast-iron fittings; and threaded joints.
- F. Condensate piping above grade, NPS 2-1/2 and larger, shall be the following:
 - 1. Schedule 80, Type E, Grade B, steel pipe; Class 150 wrought-steel fittings, flanges, and flange fittings; and welded and flanged joints.

3.2 ANCILLARY PIPING APPLICATIONS

A. Vacuum-Breaker Piping: Outlet, same as service where installed.

3.3 PIPING INSTALLATION

- A. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.
- B. Install piping in concealed locations unless otherwise indicated and except in equipment rooms and service areas.
- C. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless otherwise indicated.
- D. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.
- E. Install piping to permit valve servicing.
- F. Install piping free of sags and bends.
- G. Install fittings for changes in direction and branch connections.
- H. Install piping to allow application of insulation.
- I. Select system components with pressure rating equal to or greater than system operating pressure.
- J. Install groups of pipes parallel to each other, spaced to permit applying insulation and servicing of valves.

- K. Install drains, consisting of a tee fitting, NPS 3/4 full port-ball valve, and short NPS 3/4 threaded nipple with cap, at low points in piping system mains and elsewhere as required for system drainage.
- L. Install steam supply piping at a minimum uniform grade of 0.2 percent downward in direction of steam flow.
- M. Install condensate return piping at a minimum uniform grade of 0.4 percent downward in direction of condensate flow.
- N. Reduce pipe sizes using eccentric reducer fitting installed with level side down.
- O. Install branch connections to mains using tee fittings in main pipe, with the branch connected to top of main pipe.
- P. Install valves according to Section 230523 "General-Duty Valves for HVAC Piping."
- Q. Install unions in piping, NPS 2 and smaller, adjacent to valves, at final connections of equipment, and elsewhere as indicated.
- R. Install flanges in piping, NPS 2-1/2 and larger, at final connections of equipment and elsewhere as indicated.
- S. Install shutoff valve immediately upstream of each dielectric fitting.
- T. Install strainers on supply side of control valves, pressure-reducing valves, traps, and elsewhere as indicated. Install NPS 3/4 nipple and full port ball valve in blowdown connection of strainers NPS 2 and larger. Match size of strainer blowoff connection for strainers smaller than NPS 2.
- U. Comply with requirements in Section 230553 "Identification for HVAC Piping and Equipment" for identifying piping.
- V. Install drip legs at low points and natural drainage points such as ends of mains, bottoms of risers, and ahead of pressure regulators, and control valves.
 - 1. On straight runs with no natural drainage points, install drip legs at intervals not exceeding 300 feet.
 - 2. Size drip legs same size as main. In steam mains NPS 6 and larger, drip leg size can be reduced, but to no less than NPS 4.

3.4 STEAM AND CONDENSATE PIPING SPECIALTIES INSTALLATION

A. Comply with requirements in Section 232216 "Steam and Condensate Piping Specialties" for installation requirements for strainers, flash tanks, special-duty valves, steam traps, thermostatic air vents and vacuum breakers, and steam and condensate meters.

3.5 HANGERS AND SUPPORTS

A. Comply with requirements in Section 230529 "Hangers and Supports for HVAC Piping and Equipment" for installation of hangers and supports. Comply with requirements below for maximum spacing.

- B. Comply with requirements in Section 230548 "Vibration and Seismic Controls for HVAC" for seismic restraints.
- C. Install the following pipe attachments:
 - Adjustable steel clevis hangers for individual horizontal piping less than 20 feet Adjustable roller hangers and spring hangers for individual horizontal piping 20 feet or longer.
 - 2. Pipe Roller: MSS SP-58, Type 44 for multiple horizontal piping 20 feet or longer, supported on a trapeze.
 - 3. Spring hangers to support vertical runs.
- D. Install hangers for steel steam supply piping with the following maximum spacing:
 - 1. NPS 3/4: Maximum span, 9 feet.
 - 2. NPS 1: Maximum span, 9 feet.
 - 3. NPS 1-1/2: Maximum span, 12 feet.
 - 4. NPS 2: Maximum span, 13 feet.
 - 5. NPS 2-1/2: Maximum span, 14 feet.
 - 6. NPS 3 and Larger: Maximum span, 15 feet.
- E. Install hangers for steel steam condensate piping with the following maximum spacing:
 - 1. NPS 3/4: Maximum span, 7 feet.
 - 2. NPS 1: Maximum span, 7 feet.
 - 3. NPS 1-1/2: Maximum span, 9 feet.
 - 4. NPS 2: Maximum span, 10 feet.
 - 5. NPS 2-1/2: Maximum span, 11 feet.
 - 6. NPS 3 and Larger: Maximum span, 12 feet.

3.6 PIPE JOINT CONSTRUCTION

- A. Ream ends of pipes and remove burrs. Bevel plain ends of steel pipe.
- B. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.
- C. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 - 1. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is specified.
 - 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.
- D. Welded Joints: Construct joints according to AWS D10.12M/D10.12, using qualified processes and welding operators according to "Quality Assurance" Article.
- E. Flanged Joints: Select appropriate gasket material, size, type, and thickness for service application. Install gasket concentrically positioned. Use suitable lubricants on bolt threads.

3.7 TERMINAL EQUIPMENT CONNECTIONS

- A. Size for supply and return piping connections shall be the same as or larger than equipment connections.
- B. Install traps and control valves in accessible locations close to connected equipment.
- C. Install vacuum breakers downstream from control valve, close to coil inlet connection.
- D. Install a drip leg at coil outlet.

3.8 FIELD QUALITY CONTROL

- A. Prepare steam and condensate piping according to ASME B31.9, "Building Services Piping," and as follows:
 - 1. Leave joints, including welds, uninsulated and exposed for examination during test.
 - 2. Provide temporary restraints for expansion joints that cannot sustain reactions due to test pressure. If temporary restraints are impractical, isolate expansion joints from testing.
 - 3. Flush system with clean water. Clean strainers.
 - 4. Isolate equipment from piping. If a valve is used to isolate equipment, its closure shall be capable of sealing against test pressure without damage to valve. Install blinds in flanged joints to isolate equipment.
- B. Perform the following tests and inspections:
 - Use ambient temperature water as a testing medium unless there is risk of damage due to freezing. Another liquid that is safe for workers and compatible with piping may be used.
 - Subject piping system to hydrostatic test pressure that is not less than 1.5 times the
 working pressure. Test pressure shall not exceed maximum pressure for any vessel,
 pump, valve, or other component in system under test. Verify that stress due to pressure
 at bottom of vertical runs does not exceed 90 percent of specified minimum yield
 strength.
 - 3. After hydrostatic test pressure has been applied for at least 10 minutes, examine piping, joints, and connections for leakage. Eliminate leaks by tightening, repairing, or replacing components, and repeat hydrostatic test until there are no leaks.
- C. Prepare test and inspection reports.

END OF SECTION 232213

SECTION 232216 - STEAM AND CONDENSATE PIPING SPECIALTIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes the following piping specialties for LP steam and condensate piping:
 - 1. Steam traps.
 - 2. Thermostatic air vents and vacuum breakers.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of the following:
 - 1. Valves
 - 2. Steam trap.
 - 3. Air vent and vacuum breaker.

1.4 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For valves, safety valves, steam traps, air vents, and vacuum breakers to include in emergency, operation, and maintenance manuals.

1.5 QUALITY ASSURANCE

- A. Pipe Welding: Qualify procedures and operators according to the following:
 - 1. ASME Compliance: Safety valves and pressure vessels shall bear the appropriate ASME label. Fabricate and stamp flash tanks to comply with ASME Boiler and Pressure Vessel Code: Section VIII, Division 1.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Components and installation shall be capable of withstanding the following minimum working pressures and temperatures unless otherwise indicated:
 - 1. LP Steam Piping: 125 psig.
 - 2. Condensate Piping: 125 psig at 250 deg F.

- 3. Air-Vent and Vacuum-Breaker Piping: Equal to pressure of the piping system to which it is attached.
- 4. Safety-Valve-Inlet and -Outlet Piping: Equal to pressure of the piping system to which it is attached.

2.2 VALVES

- A. Gate, Globe, Check, Ball, and Butterfly Valves: Comply with requirements specified in Section 230523 "General-Duty Valves for HVAC Piping."
- B. Stop-Check Valves:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. A.Y. McDonald Mfg. Co.
 - b. Cincinnati Valve Company.
 - c. Crane; Crane Energy Flow Solutions.
 - Jenkins Valves.
 - 2. Body and Bonnet: Malleable iron.
 - 3. End Connections: Flanged.
 - 4. Disc: Cylindrical with removable liner and machined seat.
 - 5. Stem: Brass alloy.
 - 6. Operator: Outside screw and yoke with cast-iron handwheel.
 - 7. Packing: Polytetrafluoroethylene-impregnated packing with two-piece packing gland assembly.
 - 8. Pressure Class: 250.

2.3 STEAM TRAPS

- A. Thermostatic Traps:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Armstrong International, Inc.
 - b. Barnes & Jones, Inc.
 - c. Hoffman Specialty.
 - d. Spirax Sarco, Inc.
 - e. Sterling.
 - 2. Body: Bronze angle-pattern body with integral union tailpiece and screw-in cap.
 - 3. Trap Type: Balanced-pressure.
 - 4. Bellows: Stainless steel or monel.
 - 5. Head and Seat: Replaceable, hardened stainless steel.
 - 6. Pressure Class: 125.
- B. Float and Thermostatic Traps:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

- a. Armstrong International, Inc.
- b. Barnes & Jones, Inc.
- c. Hoffman Specialty.
- d. Spirax Sarco, Inc.
- e. Sterling.
- 2. Body and Bolted Cap: ASTM A 126, cast iron.
- 3. End Connections: Threaded.
- 4. Float Mechanism: Replaceable, stainless steel.
- 5. Head and Seat: Hardened stainless steel.
- 6. Trap Type: Balanced pressure.
- 7. Thermostatic Bellows: Stainless steel or monel.
- 8. Thermostatic air vent capable of withstanding 45 deg F of superheat and resisting water hammer without sustaining damage.
- 9. Vacuum Breaker: Thermostatic with phosphor bronze bellows, and stainless-steel cage, valve, and seat.
- 10. Maximum Operating Pressure: 125 psig.

2.4 THERMOSTATIC AIR VENTS AND VACUUM BREAKERS

A. Thermostatic Air Vents:

- 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following :
 - a. Armstrong International, Inc.
 - b. Barnes & Jones, Inc.
 - c. Dunham-Bush, Inc.
 - d. Hoffman Specialty.
 - e. Spirax Sarco, Inc.
 - f. Sterling.
- 2. Body: Cast iron, bronze, or stainless steel.
- 3. End Connections: Threaded.
- 4. Float, Valve, and Seat: Stainless steel.
- 5. Thermostatic Element: Phosphor bronze bellows in a stainless-steel cage.
- 6. Pressure Rating: 125 psig.
- 7. Maximum Temperature Rating: 350 deg F.

B. Vacuum Breakers:

- 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Armstrong International, Inc.
 - b. Dunham-Bush, Inc.
 - c. Hoffman Specialty.
 - d. Johnson Corporation (The).
 - e. Spirax Sarco, Inc.
- 2. Body: Cast iron, bronze, or stainless steel.
- 3. End Connections: Threaded.
- 4. Sealing Ball, Retainer, Spring, and Screen: Stainless steel.

- 5. O-Ring Seal: EPR.
- 6. Pressure Rating: 125 psig.
- 7. Maximum Temperature Rating: 350 deg F.

PART 3 - EXECUTION

3.1 VALVE APPLICATIONS

- A. Install shutoff duty valves at branch connections to steam supply mains, at steam supply connections to equipment, and at the outlet of steam traps.
- B. Install safety valves as required by ASME Boiler and Pressure Vessel Code. Install safety-valve discharge piping, without valves, to nearest floor drain or as indicated on Drawings. Comply with ASME Boiler and Pressure Vessel Code: Section VIII, Division 1, for installation requirements.

3.2 PIPING INSTALLATION

- A. Install piping to permit valve servicing.
- B. Install drains, consisting of a tee fitting, NPS 3/4 full port-ball valve, and short NPS 3/4 threaded nipple with cap, at low points in piping system mains and elsewhere as required for system drainage.
- C. Install valves according to Section 230523 "General-Duty Valves for HVAC Piping."
- D. Install unions in piping, NPS 2 and smaller, adjacent to valves, at final connections of equipment, and elsewhere as indicated.
- E. Install flanges in piping, NPS 2-1/2 and larger, at final connections of equipment and elsewhere as indicated.
- F. Install shutoff valve immediately upstream of each dielectric fitting.

3.3 STEAM-TRAP INSTALLATION

- A. Install steam traps in accessible locations as close as possible to connected equipment.
- B. Install full-port ball valve, strainer, and union upstream from trap; install union, check valve, and full-port ball valve downstream from trap unless otherwise indicated.

3.4 TERMINAL EQUIPMENT CONNECTIONS

- A. Install traps and control valves in accessible locations close to connected equipment.
- B. Install vacuum breakers downstream from control valve, close to coil inlet connection.

END OF SECTION 232216

SECTION 23 31 13 - METAL DUCTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions, Division 00 Information for Bidders, and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

- 1. Single-wall rectangular ducts and fittings.
- 2. Sheet metal materials.
- 3. Sealants and gaskets.
- 4. Hangers and supports.

B. Related Sections:

- 1. Division 23 Section "Testing, Adjusting, and Balancing for HVAC" for testing, adjusting, and balancing requirements for metal ducts.
- 2. Division 23 Section "Air Duct Accessories" for dampers, sound-control devices, duct-mounting access doors and panels, turning vanes, and flexible ducts.

1.3 PERFORMANCE REQUIREMENTS

- A. Delegated Duct Design: Duct construction, including sheet metal thicknesses, seam and joint construction, reinforcements, and hangers and supports, shall comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible" and performance requirements and design criteria indicated in "Duct Schedule" Article.
- B. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of the following products:
 - 1. Liners and adhesives.
 - 2. Sealants and gaskets.

1.5 QUALITY ASSURANCE

A. Welding Qualifications: Qualify procedures and personnel according to the following:

- 1. AWS D1.1/D1.1M, "Structural Welding Code Steel," for hangers and supports.
- 2. AWS D1.2/D1.2M, "Structural Welding Code Aluminum," for aluminum supports.
- 3. AWS D9.1M/D9.1, "Sheet Metal Welding Code," for duct joint and seam welding.
- B. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1, Section 5 "Systems and Equipment" and Section 7 "Construction and System Start-up."
- C. ASHRAE/IESNA Compliance: Applicable requirements in ASHRAE/IESNA 90.1, Section 6.4.4 "HVAC System Construction and Insulation."

PART 2 - PRODUCTS

2.1 SINGLE-WALL RECTANGULAR DUCTS AND FITTINGS

- A. General Fabrication Requirements: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible" based on indicated static-pressure class unless otherwise indicated.
- B. Transverse Joints: Select joint types and fabricate according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 2-1, "Rectangular Duct/Transverse Joints," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible."
- C. Longitudinal Seams: Select seam types and fabricate according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 2-2, "Rectangular Duct/Longitudinal Seams," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible."
- D. Elbows, Transitions, Offsets, Branch Connections, and Other Duct Construction: Select types and fabricate according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Chapter 4, "Fittings and Other Construction," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible."

2.2 SHEET METAL MATERIALS

- A. General Material Requirements: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible" for acceptable materials, material thicknesses, and duct construction methods unless otherwise indicated. Sheet metal materials shall be free of pitting, seam marks, roller marks, stains, discolorations, and other imperfections.
- B. Galvanized Sheet Steel: Comply with ASTM A 653/A 653M.
 - 1. Galvanized Coating Designation: G60.
 - 2. Finishes for Surfaces Exposed to View: Mill phosphatized.
- C. Reinforcement Shapes and Plates: ASTM A 36/A 36M, steel plates, shapes, and bars; black and galvanized.

- 1. Where black- and galvanized-steel shapes and plates are used to reinforce aluminum ducts, isolate the different metals with butyl rubber, neoprene, or EPDM gasket materials.
- D. Tie Rods: Galvanized steel, 1/4-inch minimum diameter for lengths 36 inches or less; 3/8-inch minimum diameter for lengths longer than 36 inches.

2.3 SEALANT AND GASKETS

- A. General Sealant and Gasket Requirements: Surface-burning characteristics for sealants and gaskets shall be a maximum flame-spread index of 25 and a maximum smoke-developed index of 50 when tested according to UL 723; certified by an NRTL.
- B. Two-Part Tape Sealing System:
 - 1. Tape: Woven cotton fiber impregnated with mineral gypsum and modified acrylic/silicone activator to react exothermically with tape to form hard, durable, airtight seal.
 - 2. Tape Width: 3 inches.
 - 3. Sealant: Modified styrene acrylic.
 - 4. Water resistant.
 - 5. Mold and mildew resistant.
 - 6. Maximum Static-Pressure Class: 10-inch wg, positive and negative.
 - 7. Service: Indoor and outdoor.
 - 8. Service Temperature: Minus 40 to plus 200 deg F.
 - 9. Substrate: Compatible with galvanized sheet steel (both PVC coated and bare), stainless steel, or aluminum.
 - 10. For indoor applications, sealant shall have a VOC content of 250 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 - 11. Sealant shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."
- C. Water-Based Joint and Seam Sealant:
 - 1. Application Method: Brush on.
 - 2. Solids Content: Minimum 65 percent.
 - 3. Shore A Hardness: Minimum 20.
 - 4. Water resistant.
 - 5. Mold and mildew resistant.
 - 6. VOC: Maximum 75 g/L (less water).
 - 7. Maximum Static-Pressure Class: 10-inch wg, positive and negative.
 - 8. Service: Indoor or outdoor.
 - 9. Substrate: Compatible with galvanized sheet steel (both PVC coated and bare), stainless steel, or aluminum sheets.
- D. Solvent-Based Joint and Seam Sealant:
 - 1. Application Method: Brush on.
 - 2. Base: Synthetic rubber resin.
 - 3. Solvent: Toluene and heptane.
 - 4. Solids Content: Minimum 60 percent.
 - 5. Shore A Hardness: Minimum 60.
 - 6. Water resistant.
 - 7. Mold and mildew resistant.

- 8. For indoor applications, sealant shall have a VOC content of 250 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- 9. VOC: Maximum 395 g/L.
- 10. Sealant shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."
- 11. Maximum Static-Pressure Class: 10-inch wg, positive or negative.
- 12. Service: Indoor or outdoor.
- 13. Substrate: Compatible with galvanized sheet steel (both PVC coated and bare), stainless steel, or aluminum sheets.
- E. Flanged Joint Sealant: Comply with ASTM C 920.
 - 1. General: Single-component, acid-curing, silicone, elastomeric.
 - 2. Type: S.
 - 3. Grade: NS.
 - 4. Class: 25.
 - 5. Use: O.
 - 6. For indoor applications, sealant shall have a VOC content of 250 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 - 7. Sealant shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."
- F. Flange Gaskets: Butyl rubber, neoprene, or EPDM polymer with polyisobutylene plasticizer.
- G. Round Duct Joint O-Ring Seals:
 - 1. Seal shall provide maximum leakage class of 3 cfm/100 sq. ft. at 1-inch wg and shall be rated for 10-inch wg static-pressure class, positive or negative.
 - 2. EPDM O-ring to seal in concave bead in coupling or fitting spigot.
 - 3. Double-lipped, EPDM O-ring seal, mechanically fastened to factory-fabricated couplings and fitting spigots.

2.4 HANGERS AND SUPPORTS

- A. Hanger Rods for Noncorrosive Environments: Cadmium-plated steel rods and nuts.
- B. Strap and Rod Sizes: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Table 5-1, "Rectangular Duct Hangers Minimum Size," and Table 5-2, "Minimum Hanger Sizes for Round Duct."
- C. Duct Attachments: Sheet metal screws, blind rivets, or self-tapping metal screws; compatible with duct materials.
- D. Trapeze and Riser Supports:
 - 1. Supports for Galvanized-Steel Ducts: Galvanized-steel shapes and plates.

PART 3 - EXECUTION

3.1 DUCT INSTALLATION

- A. Drawing plans, schematics, and diagrams indicate general location and arrangement of duct system. Indicated duct locations, configurations, and arrangements were used to size ducts and calculate friction loss for air-handling equipment sizing and for other design considerations. Install duct systems as indicated unless deviations to layout are approved on Shop Drawings and Coordination Drawings.
- B. Install ducts according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible" unless otherwise indicated.
- C. Install round and flat-oval ducts in maximum practical lengths.
- D. Install ducts with fewest possible joints.
- E. Install factory- or shop-fabricated fittings for changes in direction, size, and shape and for branch connections.
- F. Unless otherwise indicated, install ducts vertically and horizontally, and parallel and perpendicular to building lines.
- G. Install ducts close to walls, overhead construction, columns, and other structural and permanent enclosure elements of building.
- H. Install ducts with a clearance of 1 inch, plus allowance for insulation thickness.
- I. Route ducts to avoid passing through transformer vaults and electrical equipment rooms and enclosures.
- J. Where ducts pass through non-fire-rated interior partitions and exterior walls and are exposed to view, cover the opening between the partition and duct or duct insulation with sheet metal flanges of same metal thickness as the duct. Overlap openings on four sides by at least 1-1/2 inches.
- K. Where ducts pass through fire-rated interior partitions and exterior walls, install fire dampers. Comply with requirements in Division 23 Section "Air Duct Accessories" for fire and smoke dampers.
- L. Protect duct interiors from moisture, construction debris and dust, and other foreign materials. Comply with SMACNA's "IAQ Guidelines for Occupied Buildings Under Construction," Appendix G, "Duct Cleanliness for New Construction Guidelines."

3.2 INSTALLATION OF EXPOSED DUCTWORK

- A. Protect ducts exposed in finished spaces from being dented, scratched, or damaged.
- B. Trim duct sealants flush with metal. Create a smooth and uniform exposed bead. Do not use two-part tape sealing system.

- C. Grind welds to provide smooth surface free of burrs, sharp edges, and weld splatter. When welding stainless steel with a No. 3 or 4 finish, grind the welds flush, polish the exposed welds, and treat the welds to remove discoloration caused by welding.
- D. Maintain consistency, symmetry, and uniformity in the arrangement and fabrication of fittings, hangers and supports, duct accessories, and air outlets.
- E. Repair or replace damaged sections and finished work that does not comply with these requirements.

3.3 DUCT SEALING

- A. Seal ducts for duct static-pressure, seal classes, and leakage classes specified in "Duct Schedule" Article according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible."
- B. Seal ducts to the following seal classes according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible":
 - 1. Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible."
 - 2. Outdoor, Supply-Air Ducts: Seal Class A.
 - 3. Outdoor, Exhaust Ducts: Seal Class C.
 - 4. Outdoor, Return-Air Ducts: Seal Class C.
 - Unconditioned Space, Supply-Air Ducts in Pressure Classes 2-Inch wg and Lower: Seal Class B.
 - 6. Unconditioned Space, Supply-Air Ducts in Pressure Classes Higher Than 2-Inch wg: Seal Class A.
 - 7. Unconditioned Space, Exhaust Ducts: Seal Class C.
 - 8. Unconditioned Space. Return-Air Ducts: Seal Class B.
 - 9. Conditioned Space, Supply-Air Ducts in Pressure Classes 2-Inch wg and Lower: Seal Class C.
 - 10. Conditioned Space, Supply-Air Ducts in Pressure Classes Higher Than 2-Inch wg: Seal Class B.
 - 11. Conditioned Space, Exhaust Ducts: Seal Class B.
 - 12. Conditioned Space, Return-Air Ducts: Seal Class C.

3.4 HANGER AND SUPPORT INSTALLATION

- A. Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Chapter 5, "Hangers and Supports."
- B. Building Attachments: Concrete inserts, powder-actuated fasteners, or structural-steel fasteners appropriate for construction materials to which hangers are being attached.
 - 1. Where practical, install concrete inserts before placing concrete.
 - 2. Install powder-actuated concrete fasteners after concrete is placed and completely cured.
 - 3. Use powder-actuated concrete fasteners for standard-weight aggregate concretes or for slabs more than 4 inches thick.
 - 4. Do not use powder-actuated concrete fasteners for lightweight-aggregate concretes or for slabs less than 4 inches thick.
 - 5. Do not use powder-actuated concrete fasteners for seismic restraints.

- C. Hanger Spacing: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Table 5-1, "Rectangular Duct Hangers Minimum Size," and Table 5-2, "Minimum Hanger Sizes for Round Duct," for maximum hanger spacing; install hangers and supports within 24 inches of each elbow and within 48 inches of each branch intersection.
- D. Hangers Exposed to View: Threaded rod and angle or channel supports.
- E. Support vertical ducts with steel angles or channel secured to the sides of the duct with welds, bolts, sheet metal screws, or blind rivets; support at each floor and at a maximum intervals of 16 feet.
- F. Install upper attachments to structures. Select and size upper attachments with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

3.5 CONNECTIONS

- A. Make connections to equipment with flexible connectors complying with Division 23 Section "Air Duct Accessories."
- B. Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible" for branch, outlet and inlet, and terminal unit connections.

3.6 PAINTING

A. Paint interior of metal ducts that are visible through registers and grilles and that do not have duct liner. Apply one coat of flat, black, latex paint over a compatible galvanized-steel primer. Paint materials and application requirements are specified in Division 09 painting Sections.

3.7 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
- B. Leakage Tests:
 - 1. Comply with SMACNA's "HVAC Air Duct Leakage Test Manual." Submit a test report for each test.
 - 2. Disassemble, reassemble, and seal segments of systems to accommodate leakage testing and for compliance with test requirements.
 - 3. Test for leaks before applying external insulation.
 - 4. Conduct tests at static pressures equal to maximum design pressure of system or section being tested. If static-pressure classes are not indicated, test system at maximum system design pressure. Do not pressurize systems above maximum design operating pressure.
 - 5. Give seven days' advance notice for testing.
- C. Duct system will be considered defective if it does not pass tests and inspections.
- D. Prepare test and inspection reports.

3.8 START UP

A. Air Balance: Comply with requirements in Division 23 Section "Testing, Adjusting, and Balancing for HVAC."

3.9 DUCT SCHEDULE

- A. Fabricate ducts with galvanized sheet steel except as otherwise indicated:
- B. Exhaust Ducts:
 - 1. Ducts Connected to Fans Exhausting (ASHRAE 62.1, Class 1 and 2) Air:
 - a. Pressure Class: Negative 1-inch wg.
 - b. Minimum SMACNA Seal Class: A if negative pressure, and A if positive pressure.
 - c. SMACNA Leakage Class for Rectangular: 12.
 - d. SMACNA Leakage Class for Round and Flat Oval: 6.
 - 2. Ducts Connected to Equipment Not Listed Above:
 - a. Pressure Class: Positive or negative 2-inch wg.
 - b. Minimum SMACNA Seal Class: A if negative pressure, and A if positive pressure.
 - c. SMACNA Leakage Class for Rectangular: 6.
 - d. SMACNA Leakage Class for Round and Flat Oval: 3.
- C. Outdoor-Air (Not Filtered, Heated, or Cooled) Ducts:
 - 1. Ducts Connected to Air-Handling Units:
 - a. Pressure Class: Positive or negative 2-inch wg.
 - b. Minimum SMACNA Seal Class: A.
 - c. SMACNA Leakage Class for Rectangular: 6.
 - d. SMACNA Leakage Class for Round and Flat Oval: 3.
 - 2. Ducts Connected to Equipment Not Listed Above:
 - a. Pressure Class: Positive or negative 2-inch wg.
 - b. Minimum SMACNA Seal Class: A.
 - c. SMACNA Leakage Class for Rectangular: 3.
 - d. SMACNA Leakage Class for Round and Flat Oval: 3.
- D. Intermediate Reinforcement:
 - Galvanized-Steel Ducts: Galvanized steel.
- E. Elbow Configuration:
 - 1. Rectangular Duct: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 4-2, "Rectangular Elbows."
 - a. Radius Type RE 1 with minimum 1.5 radius-to-diameter ratio.
 - b. Radius Type RE 3 with minimum 1.0 radius-to-diameter ratio and two vanes.

- c. Mitered Type RE 2 with vanes complying with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 4-3, "Vanes and Vane Runners," and Figure 4-4, "Vane Support in Elbows."
- 2. Round Duct: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 3-4, "Round Duct Elbows."
 - Minimum Radius-to-Diameter Ratio and Elbow Segments: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Table 3-1, "Mitered Elbows." Elbows with less than 90-degree change of direction have proportionately fewer segments.
 - 1) Radius-to Diameter Ratio: 1.5.
 - b. Round Elbows, 12 Inches and Smaller in Diameter: Stamped or pleated.
 - c. Round Elbows, 14 Inches and Larger in Diameter: Standing seam.

F. Branch Configuration:

- 1. Rectangular Duct: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 4-6, "Branch Connection."
 - a. Rectangular Main to Rectangular Branch: 45-degree entry.
 - b. Rectangular Main to Round Branch: Spin in.
- 2. Round and Flat Oval: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 3-5, "90 Degree Tees and Laterals," and Figure 3-6, "Conical Tees." Saddle taps are permitted in existing duct.
 - a. Velocity 1000 fpm or Lower: 90-degree tap.
 - b. Velocity 1000 to 1500 fpm: Conical tap.
 - c. Velocity 1500 fpm or Higher: 45-degree lateral.

END OF SECTION 23 31 13

SECTION 23 33 00 - AIR DUCT ACCESSORIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions, Division 00 Information for Bidders, and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Barometric relief dampers.
 - 2. Manual volume dampers.
 - 3. Control dampers.
 - 4. Flange connectors.
 - 5. Turning vanes.
 - 6. Flexible connectors.
 - 7. Duct accessory hardware.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

1.4 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For air duct accessories to include in operation and maintenance manuals.

PART 2 - PRODUCTS

2.1 ASSEMBLY DESCRIPTION

- A. Comply with NFPA 90A, "Installation of Air Conditioning and Ventilating Systems," and with NFPA 90B, "Installation of Warm Air Heating and Air Conditioning Systems."
- B. Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible" for acceptable materials, material thicknesses, and duct construction methods unless otherwise indicated. Sheet metal materials shall be free of pitting, seam marks, roller marks, stains, discolorations, and other imperfections.

2.2 MATERIALS

- A. Galvanized Sheet Steel: Comply with ASTM A 653/A 653M.
 - 1. Galvanized Coating Designation: G60.
 - 2. Exposed-Surface Finish: Mill phosphatized.
- B. Stainless-Steel Sheets: Comply with ASTM A 480/A 480M, Type 304, and having a No. 2 finish for concealed ducts and for exposed ducts.
- C. Aluminum Sheets: Comply with ASTM B 209, Alloy 3003, Temper H14; with mill finish for concealed ducts and standard, 1-side bright finish for exposed ducts.
- D. Extruded Aluminum: Comply with ASTM B 221, Alloy 6063, Temper T6.
- E. Reinforcement Shapes and Plates: Galvanized-steel reinforcement where installed on galvanized sheet metal ducts; compatible materials for aluminum and stainless-steel ducts.
- F. Tie Rods: Galvanized steel, 1/4-inch minimum diameter for lengths 36 inches or less; 3/8-inch minimum diameter for lengths longer than 36 inches.

2.3 BAROMETRIC RELIEF DAMPERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Air Balance Inc.; a division of Mestek, Inc.
 - 2. American Warming and Ventilating; a division of Mestek, Inc.
 - 3. Cesco Products; a division of Mestek, Inc.
 - 4. Greenheck Fan Corporation.
 - 5. Lloyd Industries, Inc.
 - 6. Nailor Industries Inc.
 - 7. NCA Manufacturing, Inc.
 - 8. Pottorff.
 - 9. Ruskin Company.
 - 10. Vent Products Company, Inc.
- B. Suitable for horizontal or vertical mounting.
- C. Maximum Air Velocity: 1000 fpm.
- D. Frame: Hat-shaped, 0.094-inch- thick, galvanized sheet steel, with welded corners or mechanically attached and mounting flange.
- E. Blades:
 - 1. Multiple, 0.025-inch- thick, roll-formed aluminum.
 - 2. Maximum Width: 6 inches.
 - 3. Action: Parallel.
 - 4. Balance: Gravity.
 - Eccentrically pivoted.
- F. Blade Seals: Vinyl.

- G. Blade Axles: Nonferrous metal.
- H. Tie Bars and Brackets:
 - 1. Material: Aluminum.
 - 2. Rattle free with 90-degree stop.
- I. Return Spring: Adjustable tension.
- J. Bearings: Synthetic.
- K. Accessories:
 - 1. Flange on intake.
 - 2. Adjustment device to permit setting for varying differential static pressures.

2.4 MANUAL VOLUME DAMPERS

- A. Standard, Steel, Manual Volume Dampers:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Air Balance Inc.; a division of Mestek, Inc.
 - b. American Warming and Ventilating; a division of Mestek, Inc.
 - c. Flexmaster U.S.A., Inc.
 - d. McGill AirFlow LLC.
 - e. Nailor Industries Inc.
 - f. Pottorff.
 - g. Ruskin Company.
 - h. Trox USA Inc.
 - i. Vent Products Company, Inc.
 - 2. Standard leakage rating, with linkage outside airstream.
 - 3. Suitable for horizontal or vertical applications.
 - Frames:
 - a. Frame: Hat-shaped, 0.094-inch- thick, galvanized sheet steel.
 - b. Mitered and welded corners.
 - c. Flanges for attaching to walls and flangeless frames for installing in ducts.
 - 5. Blades:
 - a. Multiple or single blade.
 - b. Parallel- or opposed-blade design.
 - c. Stiffen damper blades for stability.
 - d. Galvanized-steel, 0.064 inch thick.
 - 6. Blade Axles: Nonferrous metal.
 - 7. Bearings:
 - a. Oil-impregnated bronze.

- b. Dampers in ducts with pressure classes of 3-inch wg or less shall have axles full length of damper blades and bearings at both ends of operating shaft.
- 8. Tie Bars and Brackets: Galvanized steel.

B. Jackshaft:

- 1. Size: 0.5-inch diameter.
- 2. Material: Galvanized-steel pipe rotating within pipe-bearing assembly mounted on supports at each mullion and at each end of multiple-damper assemblies.
- 3. Length and Number of Mountings: As required to connect linkage of each damper in multiple-damper assembly.

C. Damper Hardware:

- 1. Zinc-plated, die-cast core with dial and handle made of 3/32-inch- thick zinc-plated steel, and a 3/4-inch hexagon locking nut.
- 2. Include center hole to suit damper operating-rod size.
- 3. Include elevated platform for insulated duct mounting.

2.5 CONTROL DAMPERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. American Warming and Ventilating; a division of Mestek, Inc.
 - 2. Arrow United Industries; a division of Mestek, Inc.
 - 3. Cesco Products; a division of Mestek, Inc.
 - 4. Greenheck Fan Corporation.
 - 5. Lloyd Industries, Inc.
 - 6. McGill AirFlow LLC.
 - 7. Metal Form Manufacturing, Inc.
 - 8. Nailor Industries Inc.
 - 9. NCA Manufacturing, Inc.
 - 10. Pottorff.
 - 11. Ruskin Company.
 - 12. Vent Products Company, Inc.
 - 13. Young Regulator Company.
- B. Low-leakage rating, with linkage outside airstream, and bearing AMCA's Certified Ratings Seal for both air performance and air leakage.

C. Frames:

- 1. Hat shaped.
- 2. 0.094-inch- thick, galvanized sheet steel.
- 3. Mitered and welded corners.

D. Blades:

- 1. Multiple blade with maximum blade width of 6 inches.
- 2. Parallel- and opposed-blade design.
- Galvanized-steel.

- 4. 0.064 inch thick single skin or 0.0747-inch- thick dual skin.
- 5. Blade Edging: Closed-cell neoprene.
- 6. Blade Edging: Inflatable seal blade edging, or replaceable rubber seals.
- E. Blade Axles: 1/2-inch- diameter; nonferrous metal; blade-linkage hardware of zinc-plated steel and brass; ends sealed against blade bearings.
 - 1. Operating Temperature Range: From minus 40 to plus 200 deg F.

F. Bearings:

- 1. Oil-impregnated bronze.
- 2. Dampers in ducts with pressure classes of 3-inch wg or less shall have axles full length of damper blades and bearings at both ends of operating shaft.
- 3. Thrust bearings at each end of every blade.

2.6 FLANGE CONNECTORS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Ductmate Industries, Inc.
 - 2. Nexus PDQ; Division of Shilco Holdings Inc.
 - 3. Ward Industries, Inc.; a division of Hart & Cooley, Inc.
- B. Description: Add-on or roll-formed, factory-fabricated, slide-on transverse flange connectors, gaskets, and components.
- C. Material: Galvanized steel.
- D. Gage and Shape: Match connecting ductwork.

2.7 TURNING VANES

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Ductmate Industries, Inc.
 - 2. Duro Dvne Inc.
 - 3. Elgen Manufacturing.
 - 4. METALAIRE, Inc.
 - 5. SEMCO Incorporated.
 - 6. Ward Industries, Inc.; a division of Hart & Cooley, Inc.
- B. Manufactured Turning Vanes for Metal Ducts: Curved blades of galvanized sheet steel; support with bars perpendicular to blades set; set into vane runners suitable for duct mounting.
 - 1. Acoustic Turning Vanes: Fabricate airfoil-shaped aluminum extrusions with perforated faces and fibrous-glass fill.

- C. Manufactured Turning Vanes for Nonmetal Ducts: Fabricate curved blades of resin-bonded fiberglass with acrylic polymer coating; support with bars perpendicular to blades set; set into vane runners suitable for duct mounting.
- D. General Requirements: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible"; Figures 4-3, "Vanes and Vane Runners," and 4-4, "Vane Support in Elbows."
- E. Vane Construction: Single wall.
- F. Vane Construction: Single wall for ducts up to 48 inches wide and double wall for larger dimensions.

2.8 FLEXIBLE CONNECTORS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Ductmate Industries. Inc.
 - 2. Duro Dyne Inc.
 - 3. Elgen Manufacturing.
 - 4. Ventfabrics, Inc.
 - 5. Ward Industries, Inc.; a division of Hart & Cooley, Inc.
- B. Materials: Flame-retardant or noncombustible fabrics.
- C. Coatings and Adhesives: Comply with UL 181, Class 1.
- D. Metal-Edged Connectors: Factory fabricated with a fabric strip 3-1/2 inches wide attached to two strips of 2-3/4-inch- wide, 0.028-inch- thick, galvanized sheet steel or 0.032-inch- thick aluminum sheets. Provide metal compatible with connected ducts.
- E. Indoor System, Flexible Connector Fabric: Glass fabric double coated with neoprene.
 - 1. Minimum Weight: 26 oz./sq. yd..
 - 2. Tensile Strength: 480 lbf/inch in the warp and 360 lbf/inch in the filling.
 - 3. Service Temperature: Minus 40 to plus 200 deg F.
- F. Outdoor System, Flexible Connector Fabric: Glass fabric double coated with weatherproof, synthetic rubber resistant to UV rays and ozone.
 - 1. Minimum Weight: 24 oz./sq. yd..
 - 2. Tensile Strength: 530 lbf/inch in the warp and 440 lbf/inch in the filling.
 - 3. Service Temperature: Minus 50 to plus 250 deg F.
- G. High-Temperature System, Flexible Connectors: Glass fabric coated with silicone rubber.
 - 1. Minimum Weight: 16 oz./sq. yd..
 - 2. Tensile Strength: 285 lbf/inch in the warp and 185 lbf/inch in the filling.
 - 3. Service Temperature: Minus 67 to plus 500 deg F.
- H. Thrust Limits: Combination coil spring and elastomeric insert with spring and insert in compression, and with a load stop. Include rod and angle-iron brackets for attaching to fan discharge and duct.

- 1. Frame: Steel, fabricated for connection to threaded rods and to allow for a maximum of 30 degrees of angular rod misalignment without binding or reducing isolation efficiency.
- 2. Outdoor Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
- 3. Minimum Additional Travel: 50 percent of the required deflection at rated load.
- 4. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
- 5. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.
- 6. Elastomeric Element: Molded, oil-resistant rubber or neoprene.
- 7. Coil Spring: Factory set and field adjustable for a maximum of 1/4-inch movement at start and stop.

2.9 DUCT ACCESSORY HARDWARE

- A. Instrument Test Holes: Cast iron or cast aluminum to suit duct material, including screw cap and gasket. Size to allow insertion of pitot tube and other testing instruments and of length to suit duct-insulation thickness.
- B. Adhesives: High strength, quick setting, neoprene based, waterproof, and resistant to gasoline and grease.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install duct accessories according to applicable details in SMACNA's "HVAC Duct Construction Standards Metal and Flexible" for metal ducts and in NAIMA AH116, "Fibrous Glass Duct Construction Standards," for fibrous-glass ducts.
- B. Install duct accessories of materials suited to duct materials; use galvanized-steel accessories in galvanized-steel and fibrous-glass ducts, stainless-steel accessories in stainless-steel ducts, and aluminum accessories in aluminum ducts.
- C. Install backdraft dampers at inlet of exhaust fans or exhaust ducts as close as possible to exhaust fan unless otherwise indicated.
- D. Install volume dampers at points on supply, return, and exhaust systems where branches extend from larger ducts. Where dampers are installed in ducts having duct liner, install dampers with hat channels of same depth as liner, and terminate liner with nosing at hat channel.
- E. Set dampers to fully open position before testing, adjusting, and balancing.
- F. Install test holes at fan inlets and outlets and elsewhere as indicated.
- G. Install flexible connectors to connect ducts to equipment.
- H. For fans developing static pressures of 5-inch wg and more, cover flexible connectors with loaded vinyl sheet held in place with metal straps.
- I. Install duct test holes where required for testing and balancing purposes.

J. Install thrust limits at centerline of thrust, symmetrical on both sides of equipment. Attach thrust limits at centerline of thrust and adjust to a maximum of 1/4-inch movement during start and stop of fans.

3.2 FIELD QUALITY CONTROL

- A. Tests and Inspections:
 - 1. Operate dampers to verify full range of movement.
 - 2. Inspect turning vanes for proper and secure installation.

END OF SECTION 23 33 00

SECTION 238219 - FAN COIL UNITS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - Ductless fan coil units and accessories.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include rated capacities, operating characteristics, and furnished specialties and accessories.

1.4 CLOSEOUT SUBMITTALS

- A. Operation and Maintenance Data: For fan coil units to include in emergency, operation, and maintenance manuals.
 - 1. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:
 - a. Maintenance schedules and repair part lists for motors, coils, integral controls, and filters.

1.5 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Fan Coil Unit Filters: Furnish one spare filters for each filter installed.

1.6 QUALITY ASSURANCE

- A. Comply with NFPA 70.
- B. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1, Section 5 "Systems and Equipment" and Section 7 "Construction and Startup."

C. ASHRAE/IES 90.1 Compliance: Applicable requirements in ASHRAE/IES 90.1, Section 6 - "Heating, Ventilating, and Air-Conditioning."

1.7 COORDINATION

- A. Coordinate layout and installation of fan coil units and suspension system components with other construction that penetrates or is supported by ceilings, including light fixtures, HVAC equipment, fire-suppression-system components, and partition assemblies.
- B. Coordinate size and location of wall sleeves for outdoor-air intake.

PART 2 - PRODUCTS

2.1 SYSTEM DESCRIPTION

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. Factory-packaged and -tested units rated according to AHRI 440, ASHRAE 33, and UL 1995.

2.2 DUCTLESS FAN COIL UNITS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Carrier Corporation.
 - 2. ENVIRO-TEC; by Johnson Controls, Inc.
 - 3. Trane Inc.
 - 4. YORK; a Johnson Controls company.
- B. Fan Coil Unit Configurations: Row split.
 - 1. Number of Heating Coils: One with two-pipe system.
 - 2. Number of Cooling Coils: One with two-pipe system.
- C. Coil Section Insulation: 1/2-inch- thick, matte-finish, closed-cell foam complying with ASTM C 1071 and attached with adhesive complying with ASTM C 916.
 - Surface-Burning Characteristics: Insulation and adhesive shall have a combined maximum flame-spread index of 25 and smoke-developed index of 50 when tested according to ASTM E 84 by a qualified testing agency.
 - 2. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1.
- D. Drain Pans: Plastic. Fabricate pans and drain connections to comply with ASHRAE 62.1.
- E. Chassis: Galvanized steel where exposed to moisture. Floor-mounting units shall have leveling screws.

- F. Cabinet: Steel with baked-enamel finish in manufacturer's standard paint color as selected by Architect.
 - 1. Vertical Unit Front Panels: Removable, steel, with integral stamped steel discharge grille and channel-formed edges, cam fasteners, and insulation on back of panel.
- G. Outdoor-Air Wall Box: Minimum 0.1265-inch-thick, aluminum, rain-resistant louver and box with integral eliminators and bird screen.
 - 1. Louver Configuration: Horizontal, rain-resistant louver.
 - 2. Louver Material: Aluminum.
 - 3. Bird Screen: 1/2-inch mesh screen on interior side of louver.
 - 4. Decorative Grille: On outside of intake.
 - Finish: Anodized aluminum, color as selected by Architect from manufacturer's standard colors.
- H. Outdoor-Air Damper: Galvanized-steel blades with edge and end seals and nylon bearings; with electronic, modulating actuators.
- I. Filters: Minimum arrestance and a minimum efficiency reporting value (MERV) according to ASHRAE 52.2 and all addendums.
 - 1. Glass Fiber Treated with Adhesive: 80 percent arrestance and MERV 5.
- J. Indoor Refrigerant Coils: Copper tube, with mechanically bonded aluminum fins spaced no closer than 0.1 inch and brazed joints at fittings. Comply with AHRI 210/240, and leak test to minimum 450 psig for a minimum 300-psig working pressure. Include thermal expansion valve.
- K. Steam Coils: Copper distributing tube, with mechanically bonded aluminum fins spaced no closer than 0.1 inch, rated for a minimum working pressure of 75 psig.
- L. Fan and Motor Board: Removable.
 - 1. Fan: Forward curved, double width, centrifugal; directly connected to motor. Thermoplastic or painted-steel wheels, and aluminum, painted-steel, or galvanized-steel fan scrolls.
 - 2. Motor: Permanently lubricated, multispeed; resiliently mounted on motor board. Comply with requirements in Section 230513 "Common Motor Requirements for HVAC Equipment."
 - 3. Wiring Termination: Connect motor to chassis wiring with plug connection.
- M. Control devices and operational sequences are specified in Section 230900 "Instrumentation and Control for HVAC" and Section 230993 "Sequence of Operations for HVAC."
- N. Interface with DDC System for HVAC Requirements:
 - Provide BACnet or LonWorks interface for central DDC system for HVAC workstation for the following functions:
 - a. Adjust set points.
 - b. Fan coil unit start, stop, and operating status.
 - c. Data inquiry, including outdoor-air damper position, supply- and room-air temperature.
 - d. Occupied and unoccupied schedules.
- O. Electrical Connection: Factory wire motors and controls for a single electrical connection.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine areas, with Installer present, to receive fan coil units for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.
- B. Examine roughing-in for piping and electrical connections to verify actual locations before fan coil unit installation.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Install fan coil units level and plumb.
- B. Install fan coil units to comply with NFPA 90A.
- C. Verify locations of thermostats, humidistats, and other exposed control sensors with Drawings and room details before installation. Install devices 60 inches above finished floor.
- D. Install new filters in each fan coil unit within two weeks after Substantial Completion.

3.3 CONNECTIONS

- A. Piping installation requirements are specified in other Sections. Drawings indicate general arrangement of piping, fittings, and specialties. Specific connection requirements are as follows:
 - 1. Install piping adjacent to machine to allow service and maintenance.
 - Connect piping to fan coil unit factory hydronic piping package. Install piping package if shipped loose.
 - 3. Connect condensate drain to indirect waste.
 - a. Install condensate trap of adequate depth to seal against fan pressure. Install cleanouts in piping at changes of direction.
- B. Connect supply-air and return-air ducts to fan coil units with flexible duct connectors specified in Section 233300 "Air Duct Accessories." Comply with safety requirements in UL 1995 for duct connections.
- C. Ground equipment according to Section 260526 "Grounding and Bonding for Electrical Systems."
- D. Connect wiring according to Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

3.4 FIELD QUALITY CONTROL

A. Perform the following tests and inspections:

- 1. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
- 2. Operate electric heating elements through each stage to verify proper operation and electrical connections.
- 3. Test and adjust controls and safety devices. Replace damaged and malfunctioning controls and equipment.
- B. Remove and replace malfunctioning units and retest as specified above.
- C. Prepare test and inspection reports.

3.5 ADJUSTING

A. Adjust initial temperature and humidity set points.

3.6 DEMONSTRATION

A. Train Owner's maintenance personnel to adjust, operate, and maintain fan coil units.

END OF SECTION 238219

SECTION 238223 - UNIT VENTILATORS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes unit ventilators and accessories with the following heating and cooling features:
 - 1. Steam heating coil.
 - 2. Direct-expansion refrigerant cooling coil.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product
 - 1. Include rated capacities, operating characteristics, and furnished specialties and accessories for each unit type and configuration.

1.4 CLOSEOUT SUBMITTALS

- A. Operation and Maintenance Data: For unit ventilators to include in emergency, operation, and maintenance manuals.
 - 1. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:
 - Maintenance schedules and repair part lists for motors, coils, integral controls, and filters.

1.5 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Unit Ventilator Filters: Furnish one spare filter(s) for each filter installed.

1.6 QUALITY ASSURANCE

A. Comply with NFPA 70.

- B. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1, Section 5 "Systems and Equipment" and Section 7 "Construction and Startup."
- C. ASHRAE/IES 90.1 Compliance: Applicable requirements in ASHRAE/IES 90.1, Section 6 "Heating, Ventilating, and Air-Conditioning."

1.7 COORDINATION

- A. Coordinate layout and installation of unit ventilators and suspension system components with other construction that penetrates or is supported by ceilings, including light fixtures, HVAC equipment, fire-suppression-system components, and partition assemblies.
- B. Coordinate size and location of wall sleeves for outdoor-air intake.

PART 2 - PRODUCTS

2.1 SYSTEM DESCRIPTION

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. Factory-packaged and -tested units rated according to AHRI 840, ASHRAE 33, and UL 1995.

2.2 MANUFACTURERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Carrier Corporation.
 - 2. Daikin Applied.
 - 3. Johnson Controls.
 - 4. Nesbitt Aire, Inc.
 - 5. Trane.

2.3 MANUFACTURED UNITS

- A. Description: Unit ventilators consisting of finished cabinet, filter, cooling coil, drain pan, supplyair fan and motor in blow- or draw-through configuration, and hydronic cooling coil.
 - 1. Unit Ventilator Coil Configurations: Row split.
 - a. Number of Heating Coils: One with two-pipe system.
 - b. Number of Cooling Coils: One with two-pipe system.

2.4 CABINETS

A. Insulation: Minimum 1/2-inch- thick, foil-covered, closed-cell foam or matte-finish, closed-cell foam complying with ASTM C 1071 and attached with adhesive complying with ASTM C 916.

- 1. Surface-Burning Characteristics: Insulation and adhesive shall have a combined maximum flame-spread index of 25 and smoke-developed index of 50 when tested according to ASTM E 84 by a qualified testing agency.
- 2. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1.
- B. Coil Section Insulation: Insulate coil section according to Section 230616 "HVAC Equipment Insulation."
 - 1. Surface-Burning Characteristics: Insulation and adhesive shall have a combined maximum flame-spread index of 25 and smoke-developed index of 50 when tested according to ASTM E 84 by a qualified testing agency.
 - 2. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1.
- C. Main and Auxiliary Drain Pans: Insulated galvanized steel with plastic liner, formed as required by ASHRAE 62.1.
- D. Cabinet Frame and Access Panels: Welded-steel frame with removable panels fastened with hex-head tamperproof fasteners and key-operated control and valve access doors.
 - 1. Steel components exposed to moisture shall be hot-dip galvanized after fabrication.
- E. Cabinet Finish: Baked enamel, in manufacturer's standard color as selected by Architect.
- F. Indoor-Supply-Air Grille: Steel.
- G. Return-Air Inlet: Front toe space on floor units. Back bottom inlet grille on horizontal units.
- H. End Panels: Matching material and finish of unit ventilator.
- I. Outdoor-Air Wall Box: Minimum 0.1265-inch-thick, aluminum, rain-resistant louver and box with integral eliminators and bird screen.
 - 1. Louver Configuration: Horizontal, rain-resistant louver.
 - 2. Louver Material: Aluminum.
 - 3. Bird Screen: 1/2-inch mesh screen on interior side of louver.
 - 4. Finish: Anodized aluminum.

2.5 COILS

- A. Test and rate unit ventilator coils according to ASHRAE 33.
- B. Steam Coils: Copper tube, with mechanically bonded aluminum fins spaced no closer than 0.1 inch, rated for a minimum working pressure of 75 psig.
- C. Indoor Refrigerant Coils: Copper tube, with mechanically bonded aluminum fins spaced no closer than 0.1 inch, and brazed joints at fittings. Comply with AHRI 210/240, and leak test to minimum 450 psig for a minimum 300-psig working pressure. Include thermal expansion valve.

2.6 INDOOR FAN

- A. Fan and Motor Board: Removable.
 - 1. Fan: Forward curved, double width, centrifugal; directly connected to motor. Thermoplastic or painted-steel wheels, and aluminum, painted-steel, or galvanized-steel fan scrolls.
 - 2. Fan Shaft and Bearings: Hollow-steel shaft with permanently lubricated, resiliently mounted bearings.
 - 3. Motor: Permanently lubricated, multispeed, resiliently mounted on motor board. Comply with requirements in Section 230513 "Common Motor Requirements for HVAC Equipment."
 - 4. Wiring Termination: Connect motor to chassis wiring with plug connection.

2.7 DAMPERS

- A. Mixing Dampers: Galvanized-steel blades with edge and end seals and nylon bearings; with electric actuator.
- B. Outdoor-Air Dampers: Galvanized-steel blades with edge and end seals and nylon bearings; with electric actuator.
- C. Face and Bypass Dampers: Galvanized-steel damper blades with edge and end seals and nylon bearings; with factory-mounted electric actuator.

2.8 ACCESSORIES

- A. Subbase: Sheet metal floor-mounting base with leveling screws and black enamel finish.
- B. Insulated false back with gasket seals on wall and outdoor-air plenum.
 - 1. Insulation: Minimum 1/2-inch- thick, matte-finish, closed-cell foam complying with ASTM C 1071 and attached with adhesive complying with ASTM C 916.
 - a. Surface-Burning Characteristics: Insulation and adhesive shall have a combined maximum flame-spread index of 25 and smoke-developed index of 50 when tested according to ASTM E 84 by a qualified testing agency.
 - b. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1.
- C. Return-air plenum, 6 inches thick, designed to take return air from top inlet grilles in cabinets on both sides of unit ventilator with gasket seals on wall and outdoor-air plenum extension.
- D. Filters:
 - 1. Minimum Efficiency Reporting Value: According to ASHRAE 52.2.
 - 2. Material: Glass fiber treated with adhesive, MERV 5.

2.9 BASIC UNIT CONTROLS

A. Control devices and operational sequences are specified in Section 230900 " Instrumentation and Control for HVAC" and Section 230993 "Sequence of Operations for HVAC"

- B. DDC Ready: Digital Ready consists of the following components which are:
 - Factory wired and powered:
 - a. Non-fused power interrupt switch. The fan motor and controls shall have the hot line(s) protected by factory installed cartridge type fuse(s).
 - b. Three (3) speed HIGH-MEDIUM-LOW-OFF motor fan speed switch (on units with PSC or 3-speed EC Mo-tors).
 - c. 75 VA 24-volt NEC Class 2 transformer for 24-volt power supply.
 - d. Three 10-pole Europa type 16 awg terminal strips rated for 10 amps at 300 volts with nickel plated connectors and zinc plated clamping screws.
 - e. Space available in left end compartment, approximately 8" x 21" (203mm x 533mm) for UVC mounting (by others).
 - 2. Factory wired to the Terminal Strips:
 - a. Interface with the fan motor start/stop relay (R4) on units with 3-speed fan. Units with a Variable Speed ECM will have a 0-10vdc terminal interface.
 - b. Interface with a factory installed Low Air Temperature Limit freezestat (T6). Cuts out below 38°F±2 °F and automatically resets above 45°F±2 °F. Responds when any 15% of the capillary length senses these temperatures. Wired so that upon T6 cut out, the outside air damper closes and the hot water valve opens.
 - c. Discharge Air Temperature Sensors 10 K ohm NTC (Negative Temperature Coefficient) and 1 K ohm PTC (Positive Temperature Coefficient). Located on the second fan housing from the right.
 - d. Room Temperature Sensors 10K ohm (NTC) and 1 K ohm (PTC).
 - e. Outdoor Air Temperature Sensors 10K ohm (NTC) and 1 K ohm (PTC).
 - f. Direct coupled, proportional control (2 to 10 VDC or 4 to 20 mA) Outdoor Air/Return Air Damper Actuator (spring return).
 - g. Direct coupled, proportional control (2 to 10 VDC or 4 to 20 mA) Face and Bypass Damper Actuator (non-spring returned).
 - h. Interface from the terminal board with one or two End of Cycle DDC valves with spring return actuators (by others) (Not Shown) providing 24-volt power. Open/shut signal from UVC (by others).
 - i. 24-volt power wiring harness from the right to left-hand end compartment through the built-in metal wire raceway terminating at three terminal blocks.
- C. Building Automation System (BAS) Interface Requirements:
 - Provide BACnet or LonWorks interface for central BAS workstation for the following functions:
 - a. Adjust set points.
 - b. Unit ventilator start, stop, and operating status.
 - c. Data inquiry to include outdoor-air damper position, supply- and room-air temperature and humidity.
 - d. Occupied and unoccupied schedules.
- D. Electrical Connection: Factory wire motors and controls for a single electrical connection.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine areas, with Installer present, to receive unit ventilators for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.
- B. Examine roughing-in for piping and electrical connections to verify actual locations before unit ventilator installation.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Install unit ventilators to comply with NFPA 90A.
- B. Suspend horizontal unit ventilators from structure with threaded steel rods and minimum 0.25-inch static-deflection, elastomeric vibration isolation hanger. Vibration isolators are specified in Section 230548 "Vibration and Seismic Controls for HVAC Piping and Equipment."
- C. Verify location of thermostats, humidistats, and other exposed control sensors with Drawings and room details before installation. Install devices 60 inches above finished floor.

3.3 CONNECTIONS

- A. Piping installation requirements are specified in other Sections. Drawings indicate general arrangement of piping, fittings, and specialties. Specific connection requirements are as follows:
 - 1. Install piping adjacent to machine to allow service and maintenance.
 - 2. Connect piping to unit ventilator factory hydronic piping package. Install piping package if shipped loose.
 - 3. Connect condensate drain to indirect waste.
- B. Connect supply-air and return-air ducts to unit ventilators with flexible duct connectors specified in Section 233300 "Air Duct Accessories." Comply with safety requirements in UL 1995 for duct connections.
- C. Ground equipment according to Section 260526 "Grounding and Bonding for Electrical Systems."
- D. Connect wiring according to Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

3.4 FIELD QUALITY CONTROL

- A. Perform the following tests and inspections:
 - 1. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.

- 2. Test and adjust controls and safety devices. Replace damaged and malfunctioning controls and equipment.
- B. Remove and replace malfunctioning units and retest as specified above.
- C. Prepare test and inspection reports.

3.5 ADJUSTING

A. Adjust initial temperature and humidity set points.

3.6 DEMONSTRATION

A. Train Owner's maintenance personnel to adjust, operate, and maintain unit ventilators.

END OF SECTION 238223

SECTION 26 05 00 - BASIC ELECTRICAL REQUIREMENTS

PART 1 - GENERAL

1.1 WORK INCLUDED

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this section.

1.2 DEFINITIONS

- A. Provide all required products and execution for a complete and fully operational Electrical System. Such work includes, but is not limited to, that which is identified on the contract documents. For the purpose of this specification, the following terms are defined:
 - 1. "Contract documents" include the most current project drawings and specification.
 - 2. "Provide" includes furnishing and installation.
 - 3. "Furnish" includes purchasing and transporting new equipment, as specified, to the job site.
 - 4. Install" includes mounting or setting equipment in place, in specified location, making all required electrical connections for a working product.
 - 5. "Electrical System" includes all distribution of power, lighting, fire protection, life safety, communications, security, special systems, and any other information, electrical in nature, identified on the Contract Documents, from the point(s) of service to utilization device(s).
 - 6. "Connecting" means providing a power source, overcurrent devices, raceways, conductors, terminations, insulation supports, and other materials and equipment required for the operation and control of the relevant operation.
- B. Provide materials, equipment, installation or testing identified on the drawings but not specified herein; or that which is specified herein, but not identified on the drawings shall be provided at no additional cost to the Owner.
- C. Provide materials or equipment including minor items, accessories, or devices reasonably inferable as necessary for the completion and proper operation of any systems or products identified on the Contract Documents.

1.3 QUALITY ASSURANCE

- A. Discovery of any conflicting design information or any design intentions which are not readily interpreted shall be referred to the Architect/Engineer for further description or illustration prior to any product selection or execution of work.
- B. Discovery of any materials or equipment which are damaged, unsuitable, incompatible, or non-compliant with any applicable codes, laws, ordinances, or other regulations shall be brought to the direct attention of the Architect/Engineer.
- C. Generally, the Drawings establish the location, quantity and relationship of the parts of the work, and the specifications define the type and quality of materials and workmanship. Work shown in the drawings and not mentioned in the specifications, or required by the specifications and not shown on the drawings, shall be provided as if fully provided for in both. In the case of conflicts between the drawings and specifications, or within either document, the Architect/Engineer shall determine the intent. In such cases, in general, the more stringent requirement concerning greater quantity, quality, and/or resulting in a higher cost shall govern without further cost to the Owner.

D. The equipment list contained in this specification includes only the major equipment requirements. Verify the completeness and suitability of device to meet the intent of the specifications. Any additional equipment required, even if not specifically mentioned herein, shall be provided without claim for additional payment; it being understood that a complete operating system, satisfactory to the Engineer and the Owner, is required in all cases.

1.4 REGULATORY REQUIREMENTS

- A. Where governing codes indicate the Drawings and Specifications do not comply with the minimum requirements of applicable codes, the Contractor shall either notify the Architect/Engineer in writing during the bidding period identifying the revisions required to meet code requirements or provide an installation which will comply with the code requirements.
- B. All material, equipment, installation and testing should be in accordance with all applicable codes, laws, and ordinances of Federal, State and local governing bodies having jurisdiction.
- C. In case of differences between building codes, Federal and State laws, local ordinances and utility company regulations and the Contract Documents, the most stringent shall govern.
- D. Where any materials, equipment or installation is not in compliance with the more stringent of the applicable codes, laws, ordinances, regulations and contract documents, they shall be entirely removed, replaced, modified or otherwise corrected at no additional cost to the Owner.
- E. Materials, equipment, installation and testing shall conform to the latest editions of the applicable following codes:
 - NEC National Electrical Code.
 - 2. State of Illinois Building Code.
 - 3. NFPA 72 National Fire Protection Association.
 - 4. IBC International Building Code.
 - 5. City of Rockford Amendments.
- F. All product materials and work shall comply with all local codes, including but not limited to the following codes and standards as applicable, in addition to any codes and standards referenced within individual specification sections. These codes and standards shall apply to all Division 26 Sections as applicable.
 - 1. ANSI American National Standards Institute.
 - 2. ASTM American Society for Testing Materials.
 - 3. CBM Certified Ballast Manufacturers.
 - 4. ETL Electrical Testing Laboratories.
 - 5. IEEE Institute of Electrical and Electronic Engineers.
 - 6. NBS National Bureau of Standards.
 - 7. NEMA National Electrical Manufacturer's Association.
 - NFPA National Fire Protection Association.
 OSHA Occupation Safety and Health Act.
 - 10. UL Underwriters Laboratories.
 11. ADA Americans with Disabilities Act.
 12. NEC National Electrical Code.
 - 13. IBC International Building Code.
 14. IEC International Electrical Code.
 - 15. IFC International Fire Code.
- G. Where a UL standard is available, the equipment supplied for the project shall be UL listed and shall bear the UL label.

H. Notify the Architect/Engineer of any materials or apparatus believed to be inadequate, unsuitable, in violation of laws, ordinances, rules or regulations of authorities having jurisdiction.

1.5 APPROVALS

- A. Prepare shop drawings and obtain approvals from inspection authorities for emergency and exit lighting, fire alarm and life safety systems, and other electrical installations requiring specific approval..
- B. Prepare shop drawings and obtain approvals from governmental agencies and utility companies for applicable electrical installations requiring approval.
- C. Copies of the final approved drawings shall be delivered to the Architect/Engineer. Approvals shall be obtained before commencement of related work.

1.6 PERMIT AND INSPECTION

- A. Permit: Obtain and pay for all permits, bonds, license, tap-in fees, etc. required by the City, State, or other authority having jurisdiction over the work.
- B. Inspections: Arrange and pay for all inspections required by the above when they become due as part of the work of sections affected. Conceal no work until approved by these governing authorities.
- C. Engineer inspections include one above ceiling review and report before ceiling conceal work, one substantial review report and one final review report.

1.7 FEES

A. Pay fees and other charges incidental to electrical work and obtain and pay for required insurance, permits, licenses, inspections and taxes. Arrange for required inspections and delivery certificates and approvals for same to the Architect/Engineer.

1.8 SUBMITTALS

- A. Shop Drawings: As soon as practical and before any material or equipment is purchased, the Contractor shall submit shop drawings. A complete list in one category (example: all fixtures) of all shop drawings catalog cuts, material lists, etc. are to be submitted by this Contractor at one time. No consideration will be given to partial shop drawings submitted from time to time.
 - 1. Extended time for submitting special shop drawings may be requested; however, any extension of time approved does not relieve this Contractor of his responsibility of executing his work in accordance with this contract.
 - 2. Any listed materials, fixtures, apparatus, or equipment that are not in accordance with specifications requirements can and will be rejected for use in this installation and construction. Substitutions will not be permitted.
 - 3. Any materials, fixtures, apparatus or equipment installed without stamped or written approval shall be removed by the Contractor and replaced with specified equipment at the direction of the Architect/Engineer and without recourse for additional compensation.
 - 4. Review of shop drawings does not relieve the Contractor from any responsibility for deviation from the Contract Documents unless the deviation is specifically identified on the shop drawings.
 - 5. Contractor shall review and coordinate all shop drawings prior to submitting them for Architects/ Engineer's review. Contractor shall stamp each shop drawing to certify that all MEP related contractors have coordinated and reviewed it. Engineer will not check any

shop drawings that Contractor has not stamped with his review certification. Shop drawings will be reviewed once.

- B. Coordination and Installation Drawings:
 - Provide "as-built" drawings.
- C. Operation and Maintenance Data: Refer to Division 1 General Requirements and Division 26 Sections. Submit four copies of maintenance manuals in hardbound covers containing approved shop drawings and manufacturer's repair manuals, guarantees, operating instructions, wiring diagram and part lists.

1.9 OPERATION AND MAINTENANCE MANUAL

- A. Provide operation and maintenance instruction for equipment and systems
- B. Allow for reasonable amount of instruction time for electrical distribution system, emergency system, fire alarm system, communication systems, etc.
- C. Operation and Maintenance Data: Refer to Division 1 General Requirements and Division 26 Sections. Submit four copies of maintenance manuals in hardbound covers containing approved shop drawings and manufacturer's repair manuals, guarantees, operating instructions, wiring diagram and part lists.

1.10 OVERTIME WORK

- A. All construction work shall be done on regular working hours and days, unless otherwise specified. If overtime work, other than specified, is required on the project, it shall be performed as indicated.
- B. System shutdown shall occur during off business hours and shall be done on over-time basis.
- C. The base bid shall include overtime work specified. No compensation shall be made for other work done on overtime basis, unless authorized.

1.11 ALTERNATES

- A. Accepted alternates, if any, may affect portions of the Base Bid Work.
- B. Acceptance of alternates shall include provisions necessary to alter, adjust or otherwise modify work affected by the alteration.
- C. Shop drawings shall include alternate work and shall reflect changes necessitated to other work.

1.12 GUARANTEE

- A. Electrical work shall be guaranteed for both materials and labor for a period of one year.
- B. On-the-premises maintenance shall be provided at no cost to the purchaser for one year from the date of an operational and accepted installation unless damage is caused by misuse or abuse.
- C. Guarantee all wiring and equipment to be free from inherent and mechanical defects due to workmanship and materials used for the period of one full year from date of operational and

- accepted installation. Replacement of all or part of the equipment and/or correction of such defects, including labor, shall be rendered without cost to the Owner with the guarantee period.
- D. Manufacturer's equipment guarantees or warranties for periods of more than one year shall be included in the Operation and Maintenance Data

1.13 WARRANTY

A. Warranty period shall be one year after final acceptance of the system. Repairs or replacements made under the warranty shall bear an additional 1-year warranty dated from final acceptance of the repair or replacement. The Owner shall receive the benefit of all warranties furnished by manufacturers.

1.14 PROJECT/SITE CONDITIONS

- A. Carefully examine the contract documents, visit the site, and thoroughly become familiar with the local conditions relating to the work prior to bidding. Failure to do so will not relieve the contractor of the obligations of the Contract.
- B. Install Work in locations shown on Drawings, unless prevented by Project conditions.
- C. Prepare drawings showing proposed rearrangement of Work to meet Project conditions, including changes to Work specified in other Sections. Obtain permission of Architect/Engineer before proceeding.

PART 2 - PRODUCTS

2.1 MATERIALS AND EQUIPMENT

- A. Proposal shall be based upon the furnishing of all materials and equipment as specified, which in every case shall be new and, where not specifically referred to by manufacturer's name, of the best grade and quality available.
- B. Equipment and material shall be without blemish or defect and shall not be used for temporary light or power purposes, including lamps, without the Architect/ Engineer's written authorization.
- C. Items of equipment of one generic type (such as fuses), except conduit, conduit fittings, outlet boxes, wiring and cable, shall be the product of one manufacturer throughout, unless otherwise indicated or accepted by the Architect/Engineer.
- D. Where two or more makes or kinds of materials or equipment are specified, indicate which of these choices will be used. This information shall be included with the list of manufacturers for equipment and materials to be submitted to the Architect/Engineer.
- E. Manufacturers of equipment shall be firms regularly engaged in manufacturing factory-fabricated systems and equipment whose products have been in satisfactory use in similar service for not less than 5 years.

PART 3 - EXECUTION

3.1 DELIVERY AND STORAGE

- A. Receive, handle, and store electrical items and materials at the project site. Materials and electrical items shall be so placed that they are protected from damage and deterioration.
- B. Existing equipment which is to be reused shall be cleaned and protected against damage. Equipment which is removed and stored for reuse shall be stacked, boxed or crated in such a manner as to prevent damage. The cost to repair/replace this equipment due to damage incurred during its removal, storage or reinstallation shall be borne by the Contractor.
- C. The Contractor shall bear full responsibility for equipment judged unacceptable due to his failure to comply with these specifications.

3.2 INSTALLATION

- A. The Drawings for work under Division 26 are diagrammatic and are intended to convey the scope of work and indicate the general arrangement of conduit, boxes, equipment, fixtures and other work included in the Contract.
- B. Location of items required by the Drawings or specifications not definitely fixed by dimensions are approximate only and exact locations necessary to secure the best conditions and results shall be determined at the site and shall be subject to the approval of the Architect/Engineer.
- C. Follow Drawings in laying out work, check drawings of other trades to verify spaces in which work will be installed, and maintain maximum headroom and space conditions at all points.
 - 1. Where headroom or space conditions appear inadequate, the Architect/Engineer shall be notified before proceeding with installation.
 - 2. Minor conduit rerouting and changes shall be made at no additional cost to the Owner.
- D. Perform all work with skilled mechanics of the particular trade involved in a neat and workmanlike manner.
- E. Perform all work in cooperation with other trades and schedule.
- F. Perform all work in accordance with the manufacturer's recommendations.
- G. Furnish other trades advance information on locations and sizes of frames, boxes, sleeves and openings needed for the work, and also furnish information and shop drawings necessary to permit trades affected to install their work properly and without delay.
- H. Where there is evidence that work of one trade will interfere with the work of other trades, all trades shall assist in working out space allocations to make satisfactory adjustments and shall be prepared to submit and revise coordinated shop drawings.
- I. With the approval of the Architect/Engineer and without additional cost to the Owner, make minor modifications in the work as required by structural interferences, by interferences with work of other trades or for proper execution of the work.
- J. Work installed before coordinating with other trades so as to cause interference with the work of such other trades shall be changed to correct such condition without additional cost to the Owner and as directed by the Architect/Engineer.
- K. Architect/Engineer reserves the right to change location of electrical equipment or device within 10'-0" radius before work is installed without extra charge.

- Electrical Contractor shall cooperate with other trades and coordinate work so that conflicts with other work are eliminated.
- M. Equipment shall be installed with adequate space allowed for removal, repair or changes to equipment. Ready accessibility to removable parts of equipment and to wiring shall be provided without moving other equipment which is to be installed or which is in place. Electrical Contractor shall verify measurements. Discrepancies shall be brought to the Architect/Engineer's attention for interpretation.
- N. Determine temporary openings in the buildings that will be required for the admission of apparatus furnished under this Division, and notify the Architect/Engineer accordingly. In the event of failure to give sufficient notice in time to arrange for these openings during construction, assume all costs of providing such openings thereafter.
- O. Location of electrical outlets, fixture, panels, cabinets, equipment, etc. is approximate and exact locations shall be determined at the project.
- P. Electrical Contractor shall refer to contract documents for details, reflected ceiling plans, and large scale drawings.
- Q. Apparatus, lighting fixtures, material or work not shown on the drawings, but mentioned in the project specifications, or vice versa or any included accessories such as wiring, relays, switches, transformers (line voltage or low voltage), etc., necessary to make the work complete and ready for operating, even though not specified or shown on the electrical drawings shall be furnished and installed without additional expenses to the Owner. It is the Contractor's responsibility prior to bids to review all project documents.
- R. Verify final locations for rough-ins with field measurements of the actual equipment to be connected. Refer to equipment specifications in Division 2 through 26 for rough-in requirements.
- S. Equipment specified under other divisions and requiring electrical supply shall be erected, aligned, leveled and prepared for operation. Provide required controls and accessories along with installation instructions, diagrams, dimensions and supervision of installation and start-up. Provide the required electrical rough-ins and connections and confirm the electrical controls and accessories furnished under the specifications for the other divisions. Install those controls and accessories not located in the mechanical piping and ductwork. Provide additional electrical controls, accessories, fittings and devices not specified under the equipment but required for a finished, operating job. Make all final electrical connections. Participate in the start-up and test procedure.
- T. Electrical Contractor shall weatherproof all openings and penetrations through foundations and exterior walls created by fixtures and conduits to prevent moisture from entering through.
- U. Contractor shall furnish other trades advance information and/or shop drawings on locations and sizes of conduits, raceways, equipment, frames, boxes, sleeves and openings, etc. needed for their work to install their work properly and without delay.
- V. Contractor shall provide sleeves in beams, floors, columns and walls as shown on the drawings, as required by job site conditions, and/or as specified, when installing their work. All beams and columns which are required to be sleeved shall be cut and reinforced as required by field conditions and locations and sizes shall be checked and approved by Architect before contractor cuts any structural building member.

- W. Contractor shall refer to the architectural and structural contract drawings (before submitting their bids) to familiarize themselves with the extent of the general contractors work, ceiling heights and clearance for installing their work.
- X. Contractor shall install all auxiliary supporting steel as required for the supporting of their conduit, fixtures, devices, equipment, etc. All supporting steel for items above a suspended ceiling shall be from new building structure members only. All supports in the existing building shall be from walls. No connection to wood, roof deck or structure is allowed.
- Y. The locations shown for all lighting fixtures and ceiling mounted electrical equipment are diagrammatic. Exact location shall be determined from the reflected ceiling plans and/or on the job site by the construction manager. It shall be the contractor's responsibility to maintain code required spacing for items such as fire alarm devices.
- Z. Contractor shall be required to maintain the fire rated integrity of floors and/or wall partitions. All penetrations through fire rated building elements shall be effectively sealed using approved materials and methods.
- AA. Contractor shall store all materials and equipment shipped to the site on a protected area. If material is stored outside the building, it must be stored off the ground a minimum of six inches (6") set on 6 x 6 planks and/or wood pallets. All material and equipment must be completely covered with waterproof tarps or visquin. All conduit will have the ends closed to keep out dirt and other debris. No equipment will be allowed to be stored on the site unless it is sitting on wood planks and completely protected with weatherproof covers.
- BB. This contractor shall be responsible for furnishing all labor and material required to patch all openings in existing floors, walls, ceilings and fire separations created by the removal of this trades material and equipment where these openings are not to be reused.

3.3 PROTECTION

- A. Protect conduit and wireway openings against the entrance of foreign matter by means of plugs or caps. Cover fixtures, materials, equipment and devices or otherwise protect against damage from any cause, both before and after installation. Fixtures, materials, equipment, or device damaged prior to final acceptance of the work shall be restored to their original condition or replaced, all at no additional cost to Owner.
- B. Equipment shall be inherently safe and moving parts shall be covered with guards.

3.4 COOPERATION

- A. Where jurisdictional rules require the assistance of electrical mechanics in the moving and setting of electrically power equipment, provide such assistance.
- B. Where work covered by this section connects to equipment furnished under other sections, verify electrical work involved in the field and make proper connection to such equipment.

3.5 CUTTING AND PATCHING

A. Do drilling, cutting, fitting and patching necessary for the installation of conduits, wireways, and other electrical equipment, and provide supports necessary for same and for bracing and anchorage of work. No cutting of structural work or of fireproofing shall be done without the written consent of the Architect/Engineer.

B. Conduits passing through roofs or other surfaces exposed to weather shall be properly flashed as specified in roofing and waterproofing sections. This flashing work shall be paid for as part of the electrical work.

3.6 WALL CHASES

A. Provide templates or details of wall chases, where conduits, pull boxes, cabinets, and other items of equipment are to be concealed or recessed, before the work of other trades is performed in the respective areas. Show exact locations and sizes of such equipment.

3.7 SLEEVES AND OPENINGS

- A. Provide sleeves and openings for exposed wires, cables, and wireways where they pass through walls and floors.
- B. Sleeves for individual cables shall be hot-dip galvanized inside and outside. Sleeve shall be equal in gauge to heavy wall steel conduit and extended 3 inches above finished surface or wall.
- C. Furnish complete dimensioned drawings of openings required through walls and floors, for conduits, or busways, or wireways, before the work of other sections is performed in the respective areas.
- D. Provide 3 inch high concrete curbs around openings through concrete slabs in electrical closets and other openings.
- E. Pack or fill sleeves and openings after the completed work is in place. Filling shall comply with U.L., match rating of original construction and shall provide a waterproof and fireproof packing to prevent leakage of liquid, smoke, or fire through the sleeve or opening.

3.8 EXECUTION, CORRELATION AND INTENT OF DOCUMENTS

A. In the event that conflicts, if any, cannot be settled promptly and amicably between the affected trades, with work proceeding in a workmanlike manner, then the Architect/Engineer shall decide which work is to be relocated and his judgment shall be final and binding on this Contractor.

3.9 ADJUSTMENTS

A. The primary adjustments of the system(s) shall be accomplished by the Contractor to the complete satisfaction of the Owner and Architect/Engineer at the time of completion of the installation.

3.10 TESTING

A. General: Furnish meters, instruments, cable connections, equipment or apparatus necessary for making all tests.

B. Insulation Tests:

 After being pulled in place and before being connected, test all service and feeder cables with 1000 volt, 60 Hz insulation tester for one minute to determine that conductor insulation resistance to ground is not less than that recommended by the manufacturer. Test all branch circuit conductors for lighting, receptacle and miscellaneous loads prior to

- connection of loads. Tests shall not register less than one megohm to ground during an insulation test as described above for service and feeder cables. Remove, replace and retest all cable failing insulation test.
- 2. Measure insulation resistance of electrical wiring with a self-contained instrument such as direct-indicating ohmmeter of the generator battery of electronic type.
- 3. When using any type of d-c voltage source, it is essential that the output voltage is steady to prevent fluctuations in charging current. Where protective resistors are used in test instruments, take into account their effect on the magnitude of the voltage applied to the insulation under test. Properly maintain the instrument used in insulation resistant testing. Make periodic checks to insure that rated voltage is delivered and that the instrument is in calibration.
- 4. Unless otherwise specified, the insulation resistance shall be approximately one megohm for each 1000 volts of operating voltage with a minimum value of one megohm.
- C. Test all motors under load, with ammeter readings taken in each phase and the RPM of motors recorded at the time. Test all motors for correct direction of rotation.
- D. Documentation: Keep records of all tests, in tabulated, permanent, reproducible form, completely indexed and explained, indicating the specific test performed, environmental conditions such as temperature and humidity, date of performance, results obtained, corrective actions taken (if any), final results, and comments, if required. Copies of all tests shall be delivered to the Architect/Engineer prior to this final project review.

3.11 MOUNTING HEIGHTS

- 1. General Receptacles 18" to C.L.
- 2. General Tele and Data Outlets 18" to C.L.
- 3. General Toggle Switches 44" to C.L.
- 4. Exit Signs 90" to C.L.
- 5. Individual Disconnects and Starters 60" to C.L.
- 6. Grouped Disconnects and Starters ≥ 12" to C.L. ≤ 72" to C.L.
- 7. Panelboard Overcurrent Devices > 12" to C.L. < 72" to C.L.

SECTION 26 05 19 - LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

Α. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 **DEFINITIONS**

Α. EPDM: Ethylene-propylene-diene terpolymer rubber.

SUBMITTALS 1.3

- Product Data: For each type of product indicated. Α.
- В. Field quality-control test reports.

1.4 **QUALITY ASSURANCE**

- Α. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- Comply with NFPA 70. B.

PART 2 - PRODUCTS

2.1 CONDUCTORS AND CABLES

- Manufacturers: Subject to compliance with requirements, provide products by one of the Α. following:
 - 1. Alcan Products Corporation; Alcan Cable Division.
 - American Insulated Wire Corp.; a Leviton Company. 2.
 - General Cable Corporation. 3.
 - Senator Wire & Cable Company. 4.
 - Southwire Company.
- В. Copper Conductors: Comply with NEMA WC 70.
- C. Conductor Insulation: Comply with NEMA WC 70 for Types THHN-THWN.

2.2 **CONNECTORS AND SPLICES**

- Α. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. AFC Cable Systems, Inc.
 - 2. Hubbell Power Systems, Inc.
 - O-Z/Gedney; EGS Electrical Group LLC. 3.
 - 3M; Electrical Products Division. 4.
 - Tyco Electronics Corp.

B. Description: Factory-fabricated connectors and splices of size, ampacity rating, material, type, and class for application and service indicated.

2.3 ADDITIONAL ACCESSORIES

A. In the event that conduit and wire sizes increase beyond the motor or equipment manufacturer's normal provisions for conduit and wire terminations, due to voltage-drop or other considerations in motor branch-circuit designs, provide necessary auxiliary termination facilities with adequate boxes, lugs, terminals, and other components as may be required. Consult with the suppliers of motors and other items to insure that the equipment is furnished with suitable components to accept the required conduits and wires.

PART 3 - EXECUTION

3.1 CONDUCTOR MATERIAL APPLICATIONS

A. Copper. Solid for No. 10 AWG and smaller; stranded for No. 8 AWG and larger.

3.2 CONDUCTOR INSULATION AND MULTICONDUCTOR CABLE APPLICATIONS AND WIRING METHODS

- A. Branch Circuit and Feeder: Type THHN-THWN, single conductors in raceway.
- B. Cord Drops and Portable Appliance Connections: Type SO, hard service cord with stainless-steel, wire-mesh, strain relief device at terminations to suit application.
- C. Class 2 Control Circuits: Power-limited cable, concealed in building finishes.

3.3 INSTALLATION OF CONDUCTORS AND CABLES

- A. Use manufacturer-approved pulling compound or lubricant where necessary; compound used must not deteriorate conductor or insulation. Do not exceed manufacturer's recommended maximum pulling tensions and sidewall pressure values.
- B. Use pulling means, including fish tape, cable, rope, and basket-weave wire/cable grips, that will not damage cables or raceway.
- C. Install exposed cables parallel and perpendicular to surfaces of exposed structural members, and follow surface contours where possible.
- D. Support cables according to Division 26 Section "Hangers and Supports for Electrical Systems."
- E. Identify and color-code conductors and cables according to Division 26 Section "Identification for Electrical Systems."

3.4 CONNECTIONS

- A. Tighten electrical connectors and terminals according to manufacturer's published torquetightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A and UL 486B.
- B. Make splices and taps that are compatible with conductor material and that possess equivalent or better mechanical strength and insulation ratings than unspliced conductors.

C. Wiring at Outlets: Install conductor at each outlet, with at least 6 inches of slack.

3.5 INSTALLATION

- Α. Completely and thoroughly swab raceway before installing wire.
- B. Install cable in accordance with the NECA "Standard of Installation."
- C. Pull all conductors into raceway at same time.
- D. Feeders shall be installed as continuous conductors without splices whenever possible. Where feeder splices are required, the contractor shall submit a request for approval in writing to the engineer indicating the feeder and splice location. Where splices are installed without written approval, the engineer reserves the right to have the contractor replace the spliced conductors with continuous conductors at no additional cost to the Owner.
- E. Support signal cables above accessible ceiling, using cable ties to support cables from structure. Do not rest cable on ceiling grid.
- F. Use suitable cable fittings, connectors, and supports.
 - Cable supports shall be as required by Code and shall be compatible with the wire and cable type and the associated conduit size.
 - Manufacturer: OZ/Gedney or Thomas & Betts.
- G. Increase conductor size as required due to availability. Minimum feeder conductor sizes are shown on Drawings. If increased, be responsible for associated feeder conduit size and increased ground conductor size per NEC.
- Н. Provide conductors of the same size from the protective device to the last load.
- I. Make conductor length identical for parallel feeders.
- J. Provide slack wire for all future connections with ends of wires taped and blank box covers installed.
- K. Do not bend cables, either permanently or temporarily during installation, to radii less than that recommended by the manufacturer.
- L. Use conductors with 90°C insulation when wiring is within seven feet of, passing over or attached to the following:
 - 1. Boilers.
 - 2. Hot water heaters.
 - 3. Other heat producing equipment.
- Neatly train and lace wiring inside boxes, equipment, and panelboards. M.
- Splices, Taps and Terminations: N.
 - Make splices and taps in wiring #10 AWG and smaller mechanically and electrically secure with mechanical pressure type splicing devices.
 - 2. Make splices and taps of conductors #8 AWG or larger and all splices in motor terminal boxes using compression connectors requiring the use of compression tools for securing the conductors in the connectors. Termination of conductors at all distribution equipment, except transformers, shall be made using mechanical lugs. Connectors shall be of high conductivity, corrosion-resistant material and have actual contact area that shall provide

at least the current carrying capacity of the wire or cable. For conductors #1/0 and larger, connector lugs shall be of the two-hole type. Connector lugs shall be bolted to bussing using Belleville washers in combination with flat washers and nuts.

- 3. Each conductor lug or bus shall be individually made with separate lug and/or bolt as required for the termination.
- 4. Provide insulated connectors for splices and taps with a self-fusing rubber insulating tape that is non-corrosive to the connector and the conductor. Insulation tape shall have a minimum of 350 volts per mil dielectric strength. Friction or vinyl tape shall be applied directly over rubber insulating tape equal to 3M Scotch 88 type.
- O. Tighten electrical connectors and terminals, including screws and bolts, in accordance with manufacturer's published torque tightening values. Where manufacturer's torquing requirements are not indicated, tighten connector and terminals to comply with tightening torques specified in UL Standards 486A and B.
- P. Identify and color code wire and cable under provisions of Section 26 05 53. Identify each conductor with its circuit number or other designation indicated. Wire color coding shall be as follows or as required by local codes:

Normal Power

120/208 Volts:

Phase A – Black

Phase B – Red

Phase C - Blue

Neutral - White

Ground - Green

MAXIMUM BRANCH CIRCUIT LENGTHS

Q. The following indicates maximum installed length a circuit can have and still maintain an adequate voltage level at the last point of use for 20 amp circuit. If the 20 amp circuit length exceeds the length listed, use the next larger wire sized. Multiple circuit runs in the same raceway shall have all conductors sizes the same based on worst case circuit lengths.

BRANCH CIRCUIT LENGTH (IN FEET)

Wire Size	2 Wire	1 Phase	3 Phase
	120 V	208 V	208 V
12	0 to 61'	0 to 105'	0 to 122'
10	62' to 97'	106' to 168'	123' to 194'
8	98' to 154'	169' to 267'	195' to 309'
6	155' to 246	5'268' to 426'	310' to 491'

3.6 PENETRATIONS

- A. Apply firestopping to electrical penetrations of fire-rated floor and wall assemblies to restore original fire-resistance rating of assembly according to Division 07 Section "Penetration Firestopping."
- B. Apply joint sealants to cable penetrations of non-fire rated floor and wall penetrations using sealants specified in Section 07 92 00 Joint Sealants.

3.7 FIELD QUALITY CONTROL

- A. Testing Agency: Engage a qualified testing agency to perform tests and inspections and prepare test reports.
- B. Perform tests and inspections and prepare test reports.

- C. Testing: Upon installation of wires and cables and before electrical circuitry has been energized, demonstrate product capability and compliance with requirements.
 - 1. Procedures: Perform each visual and mechanical inspection and electrical test stated in NETA Acceptance Testing Specification, Section 7.3.1. Certify compliance with test parameters.
- D. Correct malfunctioning products at site, where possible, and retest to demonstrate compliance; otherwise remove and replace with new units, and retest.
- E. Inspection: Inspect wire and cable for physical damage and proper connection.
- F. Insulation Resistance Test: Prior to energization of circuitry, check installed wires and cables with megohm meter to ensure insulation resistance requirements are fulfilled.
- G. Continuity Test: Perform continuity test on all power and equipment branch circuit conductors. Verify proper phasing connections. Correct if necessary.
- H. Branch Circuits with Receptacles: Branch circuit receptacle wiring shall be tested using a Daniel Woodhead Co. circuit tester Model #1750.
- I. Test Reports: Prepare a written report to record the following:
 - 1. Test procedures used.
 - 2. Test results that comply with requirements.
 - 3. Test results that do not comply with requirements and corrective action taken to achieve compliance with requirements.
- J. Remove and replace malfunctioning units and retest as specified above.

SECTION 26 05 29 - HANGERS AND SUPPORTS FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

Α. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 PERFORMANCE REQUIREMENTS

- Α. Design supports for multiple raceways capable of supporting combined weight of supported systems and its contents.
- Rated Strength: Adequate in tension, shear, and pullout force to resist maximum loads В. calculated or imposed for this Project, with a minimum structural safety factor of five times the applied force.

QUALITY ASSURANCE 1.3

Α. Comply with NFPA 70 and all local codes

1.4 COORDINATION

- Coordinate size and location of concrete bases. Cast anchor-bolt inserts into bases. Concrete, Α. reinforcement, and formwork requirements are specified in Division 03.
- Coordinate installation of roof curbs, equipment supports, and roof penetrations. These items B. are specified in Division 07 Section "Roof Accessories."

PART 2 - PRODUCTS

2.1 SUPPORT, ANCHORAGE, AND ATTACHMENT COMPONENTS

- Α. Steel Slotted Support Systems: Comply with MFMA-4, factory-fabricated components for field assembly.
 - Manufacturers: Subject to compliance with requirements, provide products by one of the
 - a. Allied Tube & Conduit.
 - b. Cooper B-Line, Inc.; a division of Cooper Industries.
 - C. **ERICO** International Corporation.
 - d. GS Metals Corp.
 - Thomas & Betts Corporation.
 - Unistrut; Tyco International, Ltd. f.
 - Wesanco. Inc.
 - Metallic Coatings: Hot-dip galvanized after fabrication and applied according to MFMA-4. 2.
 - Nonmetallic Coatings: Manufacturer's standard PVC, polyurethane, or polyester coating 3. applied according to MFMA-4.
 - 4. Painted Coatings: Manufacturer's standard painted coating applied according to MFMA-
 - 5. Channel Dimensions: Selected for applicable load criteria.
- В. Raceway and Cable Supports: As described in NECA 1 and NECA 101.

- Conduit and Cable Support Devices: Steel hangers, clamps, and associated fittings, designed C. for types and sizes of raceway or cable to be supported.
- D. Support for Conductors in Vertical Conduit: Factory-fabricated assembly consisting of threaded body and insulating wedging plug or plugs for non-armored electrical conductors or cables in riser conduits. Plugs shall have number, size, and shape of conductor gripping pieces as required to suit individual conductors or cables supported. Body shall be malleable iron.
- E. Structural Steel for Fabricated Supports and Restraints: ASTM A 36/A 36M, steel plates, shapes, and bars; black and galvanized.
- F. Materials and Finishes: Provide adequate corrosion resistance.
- G. Provide materials, sizes, and types of anchors, fasteners and supports to carry the loads of equipment and conduit. Consider weight of wire in conduit when selecting products. Design of supports and methods of fastening to building structures shall be acceptable to the Architect/Engineer.
- Anchors and Fasteners: For point of attachment weight of 100 pounds or less. Н.
 - Concrete Structural Elements: Use precast insert system, expansion anchors, and preset inserts.
 - 2. Steel Structural Elements: Use beam clamps.
 - Concrete Surfaces: Use self-drilling anchors and expansion anchors.
 - Hollow Masonry, Plaster, and Gypsum Board Partitions: Use toggle bolts. 4.
 - Solid Masonry Walls: Use expansion anchors and preset inserts. 5.
 - 6. Sheet Metal: Use sheet metal screws.
 - Wood Elements: Use wood screws. 7.
- I. Anchors and Fasteners: For point of attachment weight of 100 pounds or more, obtain direction and approval from Architect/Engineer.
- Mounting, Anchoring, and Attachment Components: Items for fastening electrical items or their J. supports to building surfaces include the following:
 - Powder-Actuated Fasteners: Threaded-steel stud, for use in hardened portland cement concrete, steel, or wood, with tension, shear, and pullout capacities appropriate for supported loads and building materials where used.
 - Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1) Hilti Inc.
 - 2) ITW Ramset/Red Head; a division of Illinois Tool Works, Inc.
 - 3) MKT Fastening, LLC.
 - Simpson Strong-Tie Co., Inc.; Masterset Fastening Systems Unit.
 - 2. Mechanical-Expansion Anchors: Insert-wedge-type, zinc-coated steel, for use in hardened portland cement concrete with tension, shear, and pullout capacities appropriate for supported loads and building materials in which used.
 - Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - Cooper B-Line, Inc.; a division of Cooper Industries.
 - Empire Tool and Manufacturing Co., Inc. 2)
 - 3) Hilti Inc.
 - 4) ITW Ramset/Red Head; a division of Illinois Tool Works, Inc.
 - MKT Fastening, LLC.
 - 3. Concrete Inserts: Steel or malleable-iron, slotted support system units similar to MSS Type 18; complying with MFMA-4 or MSS SP-58.

- 4. Clamps for Attachment to Steel Structural Elements: MSS SP-58, type suitable for attached structural element.
- 5. Through Bolts: Structural type, hex head, and high strength. Comply with ASTM A 325.
- 6. Toggle Bolts: All-steel springhead type.
- 7. Hanger Rods: Threaded steel.

PART 3 - EXECUTION

3.1 APPLICATION

- A. Comply with NECA 1 and NECA 101 for application of hangers and supports for electrical equipment and systems except if requirements in this Section are stricter.
- B. Maximum Support Spacing and Minimum Hanger Rod Size for Raceway: Space supports for EMT, IMC, and RMC as required by NFPA 70 and local codes. Minimum rod size shall be 1/4 inch in diameter.
- C. Multiple Raceways or Cables: Install trapeze-type supports fabricated with steel slotted or other support system, sized so capacity can be increased by at least 25 percent in future without exceeding specified design load limits.
 - 1. Secure raceways and cables to these supports with single-bolt conduit clamps.
- D. Spring-steel clamps designed for supporting single conduits without bolts may be used for 1-1/2-inch and smaller raceways serving branch circuits and communication systems above suspended ceilings and for fastening raceways to trapeze supports.

3.2 SUPPORT INSTALLATION

- A. Comply with NECA 1 and NECA 101 for installation requirements except as specified in this Article.
- B. Raceway Support Methods: In addition to methods described in NECA 1, EMT may be supported by openings through structure members, as permitted in NFPA 70.
- C. Strength of Support Assemblies: Where not indicated, select sizes of components so strength will be adequate to carry present and future static loads within specified loading limits. Minimum static design load used for strength determination shall be weight of supported components plus 200 lb.
- D. Mounting and Anchorage of Surface-Mounted Equipment and Components: Anchor and fasten electrical items and their supports to building structural elements by the following methods unless otherwise indicated by code:
 - 1. To Wood: Fasten with lag screws or through bolts.
 - 2. To New Concrete: Bolt to concrete inserts.
 - 3. To Masonry: Approved toggle-type bolts on hollow masonry units and expansion anchor fasteners on solid masonry units.
 - 4. To Existing Concrete: Expansion anchor fasteners.
 - 5. Instead of expansion anchors, powder-actuated driven threaded studs provided with lock washers and nuts may be used in existing standard-weight concrete 4 inches thick or greater. Do not use for anchorage to lightweight-aggregate concrete or for slabs less than 4 inches thick.
 - 6. To Steel: Beam clamps (MSS Type 19, 21, 23, 25, or 27) complying with MSS SP-69.
 - 7. To Light Steel: Sheet metal screws.

- 8. Items Mounted on Hollow Walls and Nonstructural Building Surfaces: Mount cabinets, panelboards, disconnect switches, control enclosures, pull and junction boxes, and other devices on slotted-channel racks attached to substrate.
- E. Drill holes for expansion anchors in concrete at locations and to depths that avoid reinforcing bars.
- F. Install products in accordance with manufacturer's instructions.
- G. Provide anchors, fasteners, and supports in accordance with NECA "Standard of Installation".
- H. Do not fasten supports to pipes, ducts, mechanical equipment, and conduit.
- I. Do not use ceiling system components for support.
- J. Connections to vibration producing equipment shall be made with flexible conduit.
- K. Obtain permission from Architect/Engineer before using spring steel clamps.
- L. Obtain permission from Architect/Engineer before using powder-actuated anchors.
- M. Obtain permission from Architect/Engineer before drilling or cutting structural members.
- N. Fabricate supports from structural steel or steel channel. Rigidly weld members or use hexagon head bolts to present neat appearance with adequate strength and rigidity. Use spring lock washers under all nuts.
- O. In wet and damp locations use steel channel supports to stand cabinets and panelboards one inch off wall.
- P. Support surface or pendant lighting fixtures:
 - 1. From an outlet box by means of an interposed metal strap, where weight is less than 5 pounds.
 - 2. From an outlet box by means of a hickey or other direct threaded connection, where weight is from 5 to 50 pounds.
 - 3. Directly from structural slab, deck, or framing member, where weight exceeds 50 pounds.
- Q. Support Recessed Lighting Fixtures:
 - 1. From ceiling suspension members, where weight is less than 60 pounds.
 - 2. Directly from structural slab, deck, or framing member, where weight is 60 pounds or more.
- R. Provide weight-distributing facilities, where required, so as not to exceed the load-bearing capabilities of floors or walls that bear the weight of, or support, electrical items.

3.3 PAINTING

- A. Touchup: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.
 - 1. Apply paint by brush or spray to provide minimum dry film thickness of 2.0 mils.
- B. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A 780.

SECTION 26 05 33 - RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 DEFINITIONS

- A. EMT: Electrical metallic tubing.
- B. ENT: Electrical nonmetallic tubing.
- C. EPDM: Ethylene-propylene-diene terpolymer rubber.
- D. FMC: Flexible metal conduit.
- E. IMC: Intermediate metal conduit.
- F. LFMC: Liquidtight flexible metal conduit.
- G. LFNC: Liquidtight flexible nonmetallic conduit.
- H. RNC: Rigid nonmetallic conduit.

1.3 SUBMITTALS

- A. Product Data: For surface raceways, wireways and fittings, floor boxes, hinged-cover enclosures, and cabinets.
- B. Shop Drawings: For the following raceway components. Include plans, elevations, sections, details, and attachments to other work.
 - Custom enclosures and cabinets.
- C. Coordination Drawings: Conduit routing plans, drawn to scale, on which the following items are shown and coordinated with each other, based on input from installers of the items involved:
 - 1. Structural members in the paths of conduit groups with common supports.
 - 2. HVAC and plumbing items and architectural features in the paths of conduit groups with common supports.
- D. Qualification Data: For professional engineer and testing agency.
- E. Source quality-control test reports.

1.4 QUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- B. Comply with NFPA 70 and all other local codes.

PART 2 - PRODUCTS

2.1 CONDUIT SCHEDULE

Conduit Location	From 0V up thru 50V	Above 50V up thru 250V	Above 250V up thru 600V
Above an Accessible Ceiling	≤ 2 1/2"EMT ≥ 3" IMC	≤ 2 1/2" EMT ≥ 3" IMC	≤ 2 1/2" EMT ≥ 3" IMC
Concealed in Walls	≤ 2 1/2"EMT	≤ 2 1/2"EMT	≤ 2 1/2"EMT
	≥ 3" IMC	≥ 3" IMC	≥ 3" IMC
Exposed	≤ 2 1/2"EMT	≤ 2 1/2" EMT	≤ 2 1/2" EMT
Interior	≥ 3" IMC	≥ 3" IMC	≥ 3" IMC

^{*} All voltages are line-to-line or line-to-neutral.

2.2 CONDUIT REQUIREMENTS

- A. Minimum Size: 3/4 inch except conduits to switches and receptacles having 5 or less #12 conductors shall be ½" C unless noted otherwise.
- B. Flexible conduit connections to recessed lighting fixtures shall be made with UL approved flexible steel conduit, except where UL listed liquid tight flexible conduit is required by code, such as in air plenums, etc.
- **C.** Final connections to motors shall be made through UL listed liquid tight flexible steel conduits, 1/2 inch minimum size unless otherwise indicated.
- D. Flexible connections, where required, shall be made with flexible metallic tubing 1/2 inch minimum size or sized in accordance with code, except in areas where such connections will be exposed to oil, grease, water, or where installed out of doors. In those areas of adverse exposure, flexible connections shall be made with UL listed liquid tight flexible steel conduit. Grounding conductors with green colored insulation shall be extended through all flexible connections including fixture "whips", and fastened to terminals within the first junction boxes on either side of the flexible length.

2.3 METAL CONDUIT AND TUBING

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. AFC Cable Systems, Inc.
 - 2. Alflex Inc.
 - 3. Allied Tube & Conduit; a Tyco International Ltd. Co.
 - 4. Anamet Electrical, Inc., Anaconda Metal Hose.
 - 5. Electri-Flex Co.
 - 6. Manhattan/CDT/Cole-Flex.
 - 7. Maverick Tube Corporation.
 - 8. O-Z Gedney; a unit of General Signal.
 - 9. Wheatland Tube Company.
- B. Rigid Steel Conduit: ANSI C80.1.

^{**} Conduit in slab is not allowed for slabs which are not on grade.

- C. IMC: ANSI C80.6.
- D. EMT: ANSI C80.3.
- E. FMC: Zinc-coated steel.
- F. LFMC: Flexible steel conduit with PVC jacket.
- G. Fittings for Conduit (Including all Types and Flexible and Liquidtight), EMT, and Cable: NEMA FB 1; listed for type and size raceway with which used, and for application and environment in which installed.
 - 1. Fittings for EMT: Steel, compression type.

2.4 EXPANSION FITTINGS

- A. Provide a suitable expansion fitting in each building expansion joint. Fittings shall be complete with bonding jumper and clamps.
- B. Manufacturers: OZ/Gedney, Crouse-Hinds and Appleton.

2.5 BUSHINGS

- A. Bushings for conduits 1 inch and smaller shall be self-extinguishing thermoplastic grounding type 150 degrees C. and insulating type.
- B. Bushings for conduits 1 ¼ inch and larger shall be malleable iron body with 150 degree C. insulating ring and shall be grounding type. Insulating material shall be locked in place and non-removable.

2.6 METAL WIREWAYS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Cooper B-Line, Inc.
 - 2. Eaton
 - 3. GE
 - 4. Hoffman.
 - 5. Siemens
 - 6. Square D; Schneider Electric.
- B. Description: Sheet metal sized and shaped as indicated, NEMA 250, Type 1, unless otherwise indicated.
- C. Fittings and Accessories: Include couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps, and other fittings to match and mate with wireways as required for complete system.
- D. Wireway Covers: Screw-cover type.
- E. Finish: Manufacturer's standard enamel finish.

2.7 SURFACE RACEWAYS

A. Surface Metal Raceways: Galvanized steel with snap-on covers. Manufacturer's standard enamel finish in color selected by Architect.

- 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Mono-Systems
 - b. Hubbell
 - c. Walker Systems, Inc.; Wiremold Company (The).
 - d. Wiremold Company (The); Electrical Sales Division.
- B. Sheet Metal Outlet and Device Boxes: NEMA OS 1.
 - 1. Luminaire and Equipment Supporting Boxes: Rated for weight of equipment supported; include 1/2 inch male fixture studs where required.
 - 2. Concrete Ceiling Boxes: Concrete type.
- C. Outlet boxes shall be minimum of 2 gang and shall be sized to accommodate number of wires inside the box.
- D. Outlet boxes for telephone and data outlets shall be minimum of 2 gang and shall be 2.75" deep.

PART 3 - EXECUTION

3.1 INSTALLATION - CONDUIT

- A. Arrange conduit to maintain headroom and present neat appearance.
- B. Route conduit parallel and perpendicular to walls.
- C. Do not cross conduits in slab.
- D. Maintain adequate clearance, minimum of 12 inches, between conduit and piping.
- E. Maintain 12 inch clearance between conduit and surfaces with temperatures exceeding 104 degrees F.
- F. Cut conduit square using saw or pipe cutter; de-burr cut ends.
- G. Install no more than equivalent of three 90-degree bends between boxes. Use conduit bodies to make sharp changes in direction, as around beams. Use hydraulic one-shot bender to fabricate bends in metal conduit larger than 2 inch (50 mm) size, or provide factory elbows.
- H. Provide suitable pull string in each empty conduit except sleeves and nipples.
- I. Ground and bond conduit in accordance with NEC.
- J. Identify conduit under provisions of Section 26 05 53.
- K. In general, conduits shall be run concealed. Where exposed conduit runs are shown or required, they shall be run parallel to building construction and shall be suitably supported at required intervals.
- L. In equipment spaces, such as fan rooms, plenums, etc., conduits and outlets may be exposed, but shall avoid interference with ventilating ducts, piping, etc.
- M. Exposed conduit installed on or adjacent to ventilating ducts shall be installed after the ducts are in place, and shall be run from ceiling or wall junction boxes in such manner as to retain accessibility to junction box covers and to permit future removal or replacement of ducts.

- N. Comply with NECA 1 for installation requirements applicable to products specified in Part 2 except where requirements on Drawings or in this Article are stricter.
- O. Arrange stub-ups so curved portions of bends are not visible above the finished slab.
- P. Threaded Conduit Joints, Exposed to Wet, Damp, Corrosive, or Outdoor Conditions: Apply listed compound to threads of raceway and fittings before making up joints. Follow compound manufacturer's written instructions.
- Q. Raceway Terminations at Locations Subject to Moisture or Vibration: Use insulating bushings to protect conductors, including conductors smaller than No. 4 AWG.
- R. Install pull wires in empty raceways. Use polypropylene or monofilament plastic line with not less than 200-lb tensile strength. Leave at least 12 inches of slack at each end of pull wire.
- S. Install raceway sealing fittings at suitable, approved, and accessible locations and fill them with listed sealing compound. For concealed raceways, install each fitting in a flush steel box with a blank cover plate having a finish similar to that of adjacent plates or surfaces. Install raceway sealing fittings at the following points:
 - Where conduits pass from warm to cold locations, such as boundaries of refrigerated spaces.
 - 2. Where otherwise required by NFPA 70.
- T. Flexible Conduit Connections: Use maximum of 72 inches of flexible conduit for recessed and semirecessed lighting fixtures, equipment subject to vibration, noise transmission, or movement; and for transformers and motors.
 - 1. Use LFMC in damp or wet locations subject to severe physical damage.
 - 2. Use LFMC in damp or wet locations not subject to severe physical damage.
- U. Recessed Boxes in Masonry Walls: Saw-cut opening for box in center of cell of masonry block, and install box flush with surface of wall.
- V. Set metal floor boxes level and flush with finished floor surface.

3.2 INSTALLATION FITTINGS

- A. Use conduit hubs or sealing locknuts to fasten conduit to sheet metal boxes in damp and wet locations and to cast boxes.
- B. Avoid moisture traps; provide junction box with drain fitting at low points in conduit system.
- C. Provide conduit seals for conduits and ducts entering/exiting hazardous locations.
- D. Provide suitable fittings to accommodate expansion and deflection where conduit crosses expansion joints and in each uninterrupted run of horizontal or vertical conduit in excess of 100 feet. Fittings shall be complete with bonding jumpers and clamps.
- E. Use suitable caps to protect installed conduit against entrance of dirt and moisture.
- F. Ends of conduits shall be equipped with insulating bushings for 1 inch and smaller and insulated metallic bushings for 1-1/4 inches and larger. Ends of conduit shall be temporarily capped prior to installation and during construction to exclude foreign material.

G. Provide wall flanges and gasketing on conduits entering fan housings to minimize air leakage at points of penetration of housing.

3.3 INSTALLATION – SUPPORTS

- A. Support conduit using coated steel or malleable iron straps, lay-in adjustable hangers, clevis hangers, and split hangers.
- B. Fasten conduit supports to building structure and surfaces under provisions of Section 26 05 29.
- C. Do not support conduit with wire or perforated pipe straps. Remove wire used for temporary supports.
- D. Do not attach conduit to ceiling support wires.
- E. Bring conduit to shoulder of fittings; fasten securely.
- F. Conduit risers shall be rigidly supported on the building structure, using appropriate supports only.
- G. Conduits and other electrical items shall not be fastened to or supported from ventilating ducts, but shall be separately supported. The method of supporting and details of the supporting members shall be reviewed by the Architect/Engineer. In no case shall screws penetrate the sheet metal of the ducts.
- H. Exposed conduits run on surfaces shall be supported according to code and within 3 feet of each outlet, junction box, or cabinet, by galvanized malleable conduit clamps and clamp backs. Suspended conduits shall be supported every 5 feet by conduit hangers and round rods, or where 2 or more conduits are run parallel, by trapeze hangers suitably braced to prevent swaying.
- I. Screws for exposed work shall be stainless steel.
- J. Cadmium plated steel screws may be used for interior unexposed dry locations only.

3.4 INTERFACE WITH OTHER PRODUCTS

- A. Install conduit to preserve fire resistance rating of partitions and other elements, using materials and methods specified in Division 7.
- B. Route conduit through roof openings for piping and ductwork or through suitable roof jack with waterproof boots.

3.5 INSTALLATION OF BOXES

- A. Box sizes shall not be smaller than that required by Code for the number and size of wires and/or conduits to be installed.
- B. Maintain headroom and present neat mechanical appearance.
- C. Plenum Ceiling Areas: Install boxes in accordance with applicable Code.
- D. Install boxes to preserve fire resistance rating of partitions and other elements, using materials and methods specified in Division 07 Section "Penetration Firestopping".
- E. Use flush mounting outlet box in finished areas.

- F. Support boxes independently of conduit.
- G. Use cast outlet box in exterior locations and wet locations.
- H. Use cast floor boxes for installations in slab on grade; formed steel boxes are acceptable for other installations.
- I. Adjust floor box flush with finish flooring material.
- J. Adjust flush-mounting outlets to make front flush with finished wall material.

3.6 RACEWAY PENETRATIONS

- A. Apply firestopping to electrical penetrations of fire-rated floor and wall assemblies to restore original fire-resistance rating of assembly. Firestopping materials and installation requirements are specified in Division 07 Section "Penetration Firestopping."
- B. Apply joint sealants to electrical penetrations of non-fire rated floor and wall penetrations using sealants specified in Section 07 92 00 "Joint Sealants".

3.7 PROTECTION

- A. Provide final protection and maintain conditions that ensure coatings, finishes, and cabinets are without damage or deterioration at time of Substantial Completion.
 - Repair damage to galvanized finishes with zinc-rich paint recommended by manufacturer.
 - Repair damage to PVC or paint finishes with matching touchup coating recommended by manufacturer.

SECTION 26 05 53 - IDENTIFICATION FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUBMITTALS

A. Product Data: For each electrical identification product indicated.

1.3 QUALITY ASSURANCE

- A. Comply with ANSI A13.1 and ANSI C2.
- B. Comply with NFPA 70 and all local codes.
- C. Comply with 29 CFR 1910.145.

1.4 COORDINATION

- A. Coordinate identification names, abbreviations, colors, and other features with requirements in the Contract Documents, Shop Drawings, manufacturer's wiring diagrams, and the Operation and Maintenance Manual, and with those required by codes, standards, and 29 CFR 1910.145. Use consistent designations throughout Project.
- B. Coordinate installation of identifying devices with completion of covering and painting of surfaces where devices are to be applied.
- C. Coordinate installation of identifying devices with location of access panels and doors.
- D. Install identifying devices before installing acoustical ceilings and similar concealment.

PART 2 - PRODUCTS

2.1 CONDUCTOR IDENTIFICATION MATERIALS

A. Marker Tapes: Vinyl or vinyl-cloth, self-adhesive wraparound type, with circuit identification legend machine printed by thermal transfer or equivalent process.

2.2 WARNING LABELS AND SIGNS

- A. Comply with NFPA 70 and 29 CFR 1910.145.
- B. Factory printed, multicolor, pressure-sensitive adhesive labels, configured for display on front cover, door, or other access to equipment, unless otherwise indicated.
- C. Warning label and sign shall include, but are not limited to, the following legends:
 - 1. Workspace Clearance Warning: "WARNING OSHA REGULATION AREA IN FRONT OF ELECTRICAL EQUIPMENT MUST BE KEPT CLEAR FOR 36 INCHES."

2.3 EQUIPMENT IDENTIFICATION LABELS

- A. Engraved, Laminated Acrylic or Melamine Label: Adhesive backed, with white letters on a dark-gray background. Minimum letter height shall be 3/8 inch.
- B. Size: 1 1/4 inch by 3 inch minimum.
- C. Location: Each electrical distribution and control equipment enclosure: panelboards, transformers, motor starters, disconnect switches, circuit breakers, contactors, relay panels, control panels, Cable TV, and associated apparatus. Communications control cabinets.

2.4 MISCELLANEOUS IDENTIFICATION PRODUCTS

- A. Cable Ties: Fungus-inert, self-extinguishing, 1-piece, self-locking, Type 6/6 nylon cable ties.
 - Minimum Width: 3/16 inch.
 - 2. Tensile Strength: 50 lb, minimum.
 - 3. Temperature Range: Minus 40 to plus 185 deg F.
 - 4. Color: Black, except where used for color-coding.
- B. Paint: Paint materials and application requirements are specified in Division 09 painting Sections.
 - 1. Interior Zinc-Coated Metal (except Raceways):
 - a. Semi gloss Acrylic-Enamel Finish: Two finish coat(s) over a primer.
 - 1) Primer: Interior zinc-coated metal primer.
 - 2) Finish Coats: Interior semi gloss acrylic enamel.
- C. Fasteners for Labels and Signs: Self-tapping, stainless-steel screws or stainless-steel machine screws with nuts and flat and lock washers.

2.5 PANELBOARD DIRECTORIES

- A. Description: Type written directory of branch circuit loads.
- B. Location: At branch circuit panelboards.
- C. Legend: circuit number load location and description.

PART 3 - EXECUTION

3.1 APPLICATION

- A. Power-Circuit Conductor Identification: For conductors No. 1/0 AWG and larger use color-coding conductor tape. Identify source and circuit number of each set of conductors. For single conductor cables, identify phase in addition to the above.
- B. Branch-Circuit Conductor Identification: Where there are conductors for more than three branch circuits in same junction or pull box, use write-on tags. Identify each ungrounded conductor according to source and circuit number.
- C. Warning Labels for Indoor Cabinets, Boxes, and Enclosures for Power and Lighting: Comply with 29 CFR 1910.145 and apply self-adhesive warning labels. Identify system voltage with black letters on an orange background. Apply to exterior of door, cover, or other access.

- 1. Equipment Requiring Workspace Clearance According to NFPA 70: Unless otherwise indicated, apply to door or cover of equipment but not on flush panelboards and similar equipment in finished spaces.
- D. Equipment Identification Labels: On each unit of equipment, install unique designation label that is consistent with wiring diagrams, schedules, and Operation and Maintenance Manual. Apply labels to disconnect switches and protection equipment, central or master units, control panels, control stations, terminal cabinets, and racks of each system. Systems include power, lighting, control, communication, signal, monitoring, and alarm systems unless equipment is provided with its own identification.
 - 1. Labeling Instructions:
 - a. Indoor Equipment: Self-adhesive, engraved, laminated acrylic or melamine label. Unless otherwise indicated, provide a single line of text with 1/2-inch- high letters on 1-1/2-inch- high label; where 2 lines of text are required, use labels 2 inches high.
 - b. Elevated Components: Increase sizes of labels and letters to those appropriate for viewing from the floor.
 - 2. Equipment to Be Labeled:
 - a. Panelboards, electrical cabinets, and enclosures.
 - b. Disconnect switches.
 - c. Enclosed circuit breakers.
 - d. Motor starters.
 - e. Push-button stations.
 - f. Contactors
 - g. Remote-controlled switches, dimmer modules, and control devices.

3.2 INSTALLATION

- A. Secure nameplate to equipment front using screws or rivets.
- B. Verify identity of each item before installing identification products.
- C. Location: Install identification materials and devices at locations for most convenient viewing without interference with operation and maintenance of equipment.
- D. Apply identification devices to surfaces that require finish after completing finish work.
- E. Self-Adhesive Identification Products: Clean surfaces before application, using materials and methods recommended by manufacturer of identification device.
- F. Color-Coding for Phase and Voltage Level Identification, 600 V and Less: Use the colors listed below for ungrounded service, feeder, and branch-circuit conductors.
 - 1. Color shall be factory applied or, for sizes larger than No. 1/0 AWG if authorities having jurisdiction permit, field applied.
 - 2. Colors for 208/120-V Circuits:
 - a. Phase A: Black.
 - b. Phase B: Red.
 - c. Phase C: Blue.

- 3. Field-Applied, Color-Coding Conductor Tape: Apply in half-lapped turns for a minimum distance of 6 inches from terminal points and in boxes where splices or taps are made. Locate bands to avoid obscuring factory cable markings.
- G. Aluminum Wraparound Marker Labels and Metal Tags: Secure tight to surface of conductor or cable at a location with high visibility and accessibility.